
IB CATAM -- Intro Project Lecture

Rob Jack, rlj22@cam.ac.uk 

things you already did / already know

You will need to hand in two CATAM core projects in Jan  
   ... and two additional projects in May

You are competent with programming by now 
  (you can choose which language, MATLAB is an option)

You have attempted the Introductory Project 
   Ideally you have written a report on it, as practice

You will need to hand in your code and your report. 
   Within the report, printouts of the code are included at the end

[ the assessor will usually not look at the code, unless they  
  suspect something strange is going on ]

things you already know about the report

40% of marks for programming, 50% "for mathematics"

if you attempted the intro project you will know :

even if the programming is easy, writing it up takes time

you have to think about "what the question is really asking"

these are intentional... 

Today : mostly comments about "what to write about" 

(note, perfect programs will only get you 8 out of 20)

resources

https://www.maths.cam.ac.uk/undergrad/catam/IB/

. Assessor's model answer

. Student's example write-up

both of these have comments about mark scheme etc

they are different in style (perhaps not surprising), 
  but they are both excellent as reports

we will discuss some aspects of "the maths" and "the writing", 
  to illustrate general principles



writing style and explanations
Writing about mathematics is not easy !

If you are asked to "explain" or "discuss" then there would be  
many possible things to say, you have to make choices

You have read enough maths to judge what is a "good explanation", 
  eg think about the lecture notes / books / blogs that you like to read, 
    and what makes them readable

A few guidelines : 

  ask yourself if your explanation would make sense to a typical  
  IB student

  don't be afraid to "state the obvious"

  read back what you wrote and edit, then read and edit again,  
    then put it aside for 3 days before reading again, etc...

format

The following slides contain a mixture of 

    quotes from model answer + student answer

    parenthetical notes from me, mostly in [square brackets]

    general comments on Computational Projects

Q1

0.1 Root Finding in One Dimension

Divya Karthikeyan

Question 1

To show graphically that equation 2x� 3 sin(x) + 5 = 0 has exactly one root, plot y = 2x� 3 sin(x) + 5
and y = 0 and show that these two lines have only one point of intersection. I will plot the graph in the
range x 2 [�5, 0]. This is because, for x < �5, 2x + 5 < 3 sin(x), so y = 2x � 3 sin(x) + 5 < 0 and for
x > 0, |3 sin(x)| < 2x+ 5, so y = 2x� 3 sin(x) + 5 > 0.

Thus y < 0 for x < �5, and y > 0 for x > 0, so no root can lie outside the range [-5,0].

>> x=linspace(-5,0,1000);
y=2*x-3*sin(x)+5;
>> plot(x,y,’b’,x,0,’g’)
>> xlabel(’x’); ylabel(’y’);legend(’2x-3sin(x)+5’,’0’);
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Figure 1: A graph displaying the intersection of y = 2x� 3 sin(x) + 5 and y = 0

From the graph, the function intersects the x-axis only once in this range, outside which we have deter-
mined there are no further points of intersection. Thus 2x� 3 sin(x) + 5 = 0 has only one root.

Binary Search

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by binary search is show on page 12, labelled

q2_binarysearch(xlow,xhigh)

This program requires only the input of xlow and xhigh with termination of the iteration as soon as the
trunction error is guaranteed to be less than ✏ = 0.5 x 10�5; the program also prints out the number of
iterations, N , as well as an estimate of the root.

Testing for functionality of the program:

(i) Initial interval [-3,-2]

1

+1T for reasoning

+0.5C for graph

Assessor comments in Red

This was written by a Part IB student and shows what is expected of a good project write-up.  
There is room for improvement, but the project would probably receive full marks.

[student answer]

0.1 Root Finding in One Dimension

Divya Karthikeyan

Question 1

To show graphically that equation 2x� 3 sin(x) + 5 = 0 has exactly one root, plot y = 2x� 3 sin(x) + 5
and y = 0 and show that these two lines have only one point of intersection. I will plot the graph in the
range x 2 [�5, 0]. This is because, for x < �5, 2x + 5 < 3 sin(x), so y = 2x � 3 sin(x) + 5 < 0 and for
x > 0, |3 sin(x)| < 2x+ 5, so y = 2x� 3 sin(x) + 5 > 0.

Thus y < 0 for x < �5, and y > 0 for x > 0, so no root can lie outside the range [-5,0].

>> x=linspace(-5,0,1000);
y=2*x-3*sin(x)+5;
>> plot(x,y,’b’,x,0,’g’)
>> xlabel(’x’); ylabel(’y’);legend(’2x-3sin(x)+5’,’0’);
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Figure 1: A graph displaying the intersection of y = 2x� 3 sin(x) + 5 and y = 0

From the graph, the function intersects the x-axis only once in this range, outside which we have deter-
mined there are no further points of intersection. Thus 2x� 3 sin(x) + 5 = 0 has only one root.

Binary Search

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by binary search is show on page 12, labelled

q2_binarysearch(xlow,xhigh)

This program requires only the input of xlow and xhigh with termination of the iteration as soon as the
trunction error is guaranteed to be less than ✏ = 0.5 x 10�5; the program also prints out the number of
iterations, N , as well as an estimate of the root.

Testing for functionality of the program:

(i) Initial interval [-3,-2]

1

+1T for reasoning

+0.5C for graph

Assessor comments in Red

This was written by a Part IB student and shows what is expected of a good project write-up.  
There is room for improvement, but the project would probably receive full marks.

<latexit sha1_base64="OD1kEEgJaMu9N16itmiU9l/l6k8="></latexit>

Show graphically that 2x� 3 sinx+ 5 has exactly one root

0.5 mark for programming

1 mark for "maths" explanation  
eg, why do we only plot this  
  range

[ marking is out of 20, 
  then it gets scaled ]

Q2 Binary search 

0.1 Root Finding in One Dimension

Question 1

Comments

Use titles,
etc. to
di↵erentiate
parts of your
answers.

Remember
to append
printouts of
your
programs.

Figures can
be included
in-line,
overleaf on a
separate
page, or
clumped at
the end of
your project
(but in the
latter case
you must
include a
page
reference).

Black and
white figures
are fine.

In order to find the roots of 2x+ 5� 3 sinx = 0, it is su�cient to plot the range [�4,�1] because

(i) 2x+ 5 < �3 6 �|3 sinx| for x < �4,

(ii) 2x+ 5 > 3 > |3 sinx| for x > �1.

Hence there can be no root outside the range [�4,�1]. See figure 1 for plots of 2x+ 5 and

3 sinx in the range [�4,�1]; the program can be found on page 10.Marking
Scheme

+ 1
2 pro-

gramming
mark for

program and
graph.
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Figure 1: Plot of 2x+ 5 and 3 sinx.

Moreover, there can be no root in �4 < x < �⇡ or �5/2 < x < �1 since 2x+ 5 and 3 sinx have+1 theory
mark for
choice of

bounds and
other

reasoning.

opposite signs in these ranges. That leaves the interval [�⇡,�5/2] where 2x+ 5 is increasing

from negative to zero and 3 sinx is decreasing from zero to negative, giving exactly one inter-

section. We conclude that there is only one root of 2x+ 5� 3 sinx = 0 and that it is in the

interval [�⇡,�5/2].

Make it
obvious that
you have
done the
multiple runs
requested.

Binary Search: Programming Task

A program using binary search to solve 2x+ 5� 3 sinx = 0 is listed on page 11. Results for a+1 1
2 pro-

gramming
marks for

program and
output.

Table 1: Binary search results

Initial Interval Number of Iterations Final Iterate Bound on Truncation Error

[�3.0,�2.0] 18 x18 = �2.8832359 . . . ±0.0000038 . . .

[�⇡,�5/2] 17 x17 = �2.8832414 . . . ±0.0000049 . . .

[�5⇡/4,�3⇡/4] 19 x19 = �2.8832397 . . . ±0.0000030 . . .

representative number of runs are listed in table 1.
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Moreover, there can be no root in �4 < x < �⇡ or �5/2 < x < �1 since 2x+ 5 and 3 sinx have+1 theory
mark for
choice of

bounds and
other

reasoning.

opposite signs in these ranges. That leaves the interval [�⇡,�5/2] where 2x+ 5 is increasing

from negative to zero and 3 sinx is decreasing from zero to negative, giving exactly one inter-

section. We conclude that there is only one root of 2x+ 5� 3 sinx = 0 and that it is in the

interval [�⇡,�5/2].

Make it
obvious that
you have
done the
multiple runs
requested.

Binary Search: Programming Task

A program using binary search to solve 2x+ 5� 3 sinx = 0 is listed on page 11. Results for a+1 1
2 pro-

gramming
marks for

program and
output.

Table 1: Binary search results

Initial Interval Number of Iterations Final Iterate Bound on Truncation Error

[�3.0,�2.0] 18 x18 = �2.8832359 . . . ±0.0000038 . . .

[�⇡,�5/2] 17 x17 = �2.8832414 . . . ±0.0000049 . . .

[�5⇡/4,�3⇡/4] 19 x19 = �2.8832397 . . . ±0.0000030 . . .

representative number of runs are listed in table 1.

July 2018/Part IB/0.1 Page 1 of 17 �c University of Cambridge

0.1 Root Finding in One Dimension

Question 1

Comments

Use titles,
etc. to
di↵erentiate
parts of your
answers.

Remember
to append
printouts of
your
programs.

Figures can
be included
in-line,
overleaf on a
separate
page, or
clumped at
the end of
your project
(but in the
latter case
you must
include a
page
reference).

Black and
white figures
are fine.

In order to find the roots of 2x+ 5� 3 sinx = 0, it is su�cient to plot the range [�4,�1] because

(i) 2x+ 5 < �3 6 �|3 sinx| for x < �4,

(ii) 2x+ 5 > 3 > |3 sinx| for x > �1.

Hence there can be no root outside the range [�4,�1]. See figure 1 for plots of 2x+ 5 and

3 sinx in the range [�4,�1]; the program can be found on page 10.Marking
Scheme

+ 1
2 pro-

gramming
mark for

program and
graph.

−4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3

−2

−1

0

1

2

3

4

x

 

 

2*x+5

3*sin(x)

Figure 1: Plot of 2x+ 5 and 3 sinx.

Moreover, there can be no root in �4 < x < �⇡ or �5/2 < x < �1 since 2x+ 5 and 3 sinx have+1 theory
mark for
choice of

bounds and
other

reasoning.

opposite signs in these ranges. That leaves the interval [�⇡,�5/2] where 2x+ 5 is increasing

from negative to zero and 3 sinx is decreasing from zero to negative, giving exactly one inter-

section. We conclude that there is only one root of 2x+ 5� 3 sinx = 0 and that it is in the

interval [�⇡,�5/2].

Make it
obvious that
you have
done the
multiple runs
requested.

Binary Search: Programming Task

A program using binary search to solve 2x+ 5� 3 sinx = 0 is listed on page 11. Results for a+1 1
2 pro-

gramming
marks for

program and
output.

Table 1: Binary search results

Initial Interval Number of Iterations Final Iterate Bound on Truncation Error

[�3.0,�2.0] 18 x18 = �2.8832359 . . . ±0.0000038 . . .

[�⇡,�5/2] 17 x17 = �2.8832414 . . . ±0.0000049 . . .

[�5⇡/4,�3⇡/4] 19 x19 = �2.8832397 . . . ±0.0000030 . . .

representative number of runs are listed in table 1.

July 2018/Part IB/0.1 Page 1 of 17 �c University of Cambridge

[model answer]

[1.5 programming marks]

Ordinarily, the assessor will not "read the program"
Hence, the report must have a clear record (with evidence) of what you did

The assignment specifically requests output for several initial values,  
so it is not enough to say (eg): 
"I checked several initial intervals and obtained consistent results" 



Q3 <latexit sha1_base64="KEf87M8YFqudH9o+xDFAGxHnav8="></latexit>

Fixed point iteration

xN+1 = f(xN ), f(x) =
3 sinx+ kx� 5

2 + k

<latexit sha1_base64="tJSCDz43JMORIN0/or28s75iMwo="></latexit>

Does the resulting sequence converge to the root of 2x� 3 sinx+ 5 ?

graph from  
model answer. 
  1 programming  
   mark
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Figure 2: The first few iterations based on (1) with k = 0 and x0 = �2.

Convergence. From the mean-value theorem we know that if a function f is continuous on

the closed interval [a, b], and di↵erentiable on the open interval (a, b), there exists some

⇠ 2 (a, b) such that+1 theory
mark for

explaining
convergence

and
identifying

k > 1
2 .

f(b)� f(a) = f
0
(⇠)(b� a) .

It follows that

xN � x⇤ = f(xN�1)� f(x⇤) = f
0
(⇠)(xN�1 � x⇤) ,

for some ⇠ in (xN�1, x⇤). Hence if |f 0
(⇠)| < 1 for all ⇠ 2 [�⇡,�⇡/2], and if xN�1 is in this

interval, then, since f is continuous and the interval closed, it follows that the iteration

is a contraction mapping, the iterates will remain in this interval, and the iteration will

converge. Further,

|f 0
(⇠)| =

����
(3 cos ⇠ + k)

(2 + k)

���� < 1 for all ⇠ 2 [�⇡,�⇡/2] if k >
1
2 .

Thus convergence is guaranteed if x0 2 [�⇡,�⇡/2] and k >
1
2 .

Monotonic/oscillatory convergence. Calculations also show that f
0
(x⇤) changes sign from+ 1

2 theory
mark for

explanation
of type of

convergence.

negative to positive as k increases through kc ⇡ 2.9. Given a su�ciently good initial guess,

x0, iterations using a value of k slightly greater/less than kc should therefore yield rapid

monotonic/oscillatory convergence since f
0
(x⇤) will be small and positive/negative. This

is illustrated in tables 2 and 3.

Table 2: Iterates with k = 3.5 and x0 = �2.

N xN ✏N ✏N/✏N�1 f
0
(xN )

0 -2.0000000 8.832369e-01

1 -2.6777986 2.054383e-01 0.2325970 0.1485300

2 -2.8571507 2.608618e-02 0.1269782 0.1128263

3 -2.8803442 2.892679e-03 0.1108894 0.1094173

4 -2.8829210 3.159219e-04 0.1092143 0.1090560

5 -2.8832024 3.444623e-05 0.1090340 0.1090168

6 -2.8832331 3.755134e-06 0.1090144 0.1090125

7 -2.8832365 4.093556e-07 0.1090122 0.1090120

July 2018/Part IB/0.1 Page 3 of 17 �c University of Cambridge

(3 sin(x) - 5)/2

(does not converge
 for these parameters)

Q3

<latexit sha1_base64="aXSuiXhcvcYyYnIWsRb+zEW5ll4=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AriGCZKaIuFApuXEkF+4DpMGTStA3NPEgyYhkK/oobF4q49Tvc+Tem7Sy09UAuh3Pu5d4cP+ZMKsv6NnILi0vLK/nVwtr6xuaWub3TkFEiCK2TiEei5WNJOQtpXTHFaSsWFAc+p01/cD32mw9USBaF92oYUzfAvZB1GcFKS56556AS9W7RFXrU9UTX4xJyPbNola0J0DyxM1KEDDXP/Gp3IpIENFSEYykd24qVm2KhGOF0VGgnksaYDHCPOpqGOKDSTSfnj9ChVjqoGwn9QoUm6u+JFAdSDgNfdwZY9eWsNxb/85xEdS/clIVxomhIpou6CUcqQuMsUIcJShQfaoKJYPpWRPpYYKJ0YgUdgj375XnSqJTts/LpXaVYvcziyMM+HMAR2HAOVbiBGtSBQArP8ApvxpPxYrwbH9PWnJHN7MIfGJ8/7KaS4A==</latexit>

[ eN = xN � x⇤ ]

<latexit sha1_base64="tbP1Z2VbMAWjWmhgV7uODl2l0lE="></latexit>

[ errors grow in magnitude
when xN is close to the root ]

<latexit sha1_base64="UumBEafqFKmYwDQZj+EUDszh8Yo=">AAAB/XicbVC7TsMwFL3hWcorPDYWiwqJqUoqBAwMlVgYi9SXlEaV4zitVceOYgcpVBW/wsIAQqz8Bxt/g9tmgJY7HZ1zru/xCRLOlHacb2tldW19Y7O0Vd7e2d3btw8O20pmKaEtIrlMuwFWlDNBW5ppTrtJSnEccNoJRrdTvfNAU8WkaOo8oX6MB4JFjGBtqL593BOSiZAKjTzUxLnxI79vV5yqMxu0DNwCVKCYRt/+6oWSZLF5hnCslOc6ifbHONWMcDop9zJFE0xGeEA9AwWOqfLHs/QTdGaYEEXmcCRNjBn7e2OMY6XyODDOGOuhWtSm5H+al+no2h8zkWSaCjI/FGUcaYmmVaCQpZRonhuAScpMVkSGOMVEm8LKpgR38cvLoF2rupfVi/tapX5T1FGCEziFc3DhCupwBw1oAYFHeIZXeLOerBfr3fqYW1esYucI/oz1+QPChpTC</latexit>

[ Taylor ]

<latexit sha1_base64="U8wqYkbxx38y8ZUav+DW25flQI8=">AAACFXicbVDLSgMxFM34tr6qLt0Ei+BCyoyIunBREMGlgq2FcSiZ9E4bmkmG5I44lP6EG3/FjQtF3Aru/BvTx8LXgcDhnHu4uSfOpLDo+5/e1PTM7Nz8wmJpaXllda28vtGwOjcc6lxLbZoxsyCFgjoKlNDMDLA0lnAd906H/vUtGCu0usIigyhlHSUSwRk6qVXeO7vLJBOKYhdoSCXjPaoTyrVyqQ4oDjSicUFv2hptq1zxq/4I9C8JJqRCJrholT9cjucpKOSSWRsGfoZRnxkUXMKgdJNbyNxK1oHQUcVSsFF/dNWA7jilTRNt3FNIR+r3RJ+l1hZp7CZThl372xuK/3lhjslx1Bcqy9EdOF6U5JKipsOKaFsY4CgLRxg3wv2V8i4zjKMrsuRKCH6f/Jc09qvBYfXgcr9SO5nUsUC2yDbZJQE5IjVyTi5InXByTx7JM3nxHrwn79V7G49OeZPMJvkB7/0LDemeHg==</latexit>

Explain the [ lack of convergence ] by . . .

xN+1 = f(xN ) = f(x⇤) + (xN � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN � x⇤)f
0(x⇤)

Recall that the truncation error in the N th iterate is eN .

) eN+1 ⇡ eNf 0(x⇤)

Thus the iteration will diverge if |f 0(x⇤)| = |3 cos(x⇤)|
2 > 1, which is the case for root x⇤ = �2.8832...

Thus convergence does not occur.

(ii) Recall that the truncation error in the N th iterate is eN = xN � x⇤.

eN+1 = xN+1 � x⇤

= f(xN )� f(x⇤)

= f 0(c)(xN � x⇤) by the Mean Value Theorem for some c 2 (xN , x⇤)

= f 0(c)eN

Thus the error reduces, and hence the scheme converges, if |f 0(x)| < 1 8 x 2 (�⇡,�⇡
2 ).

For f(x) = 3 sin(x)+kx�5
2+k , f 0(x) = 3 cos(x)+k

2+k ,

And for xN 2 (�⇡,�⇡
2 ),�1 < cos(xN ) < 0,

) �3+k
2+k < f 0(x) < k

2+k

So for convergence we require:

(i)� 1 <
�3 + k

2 + k
< 1 ) k >

1

2

and

(ii)� 1 <
k

2 + k
< 1 ) k > �1

Thus convergence is guaranteed for k > 1
2 .

(iii) The error reduces monotonically, and hence the scheme converges monotonically, if 0  f 0(x) <
18 x 2 (a, b). Similarly, the error reduces, and hence the scheme converges, in an oscillatory manner if
�1 < f 0(x) < 0 8 x 2 (a, b).

Monotonic convergence requires 0 < f 0(x) < 1 for all x around the root. If xN remains in the range
(�⇡,�⇡

2 ), for monotonic convergence, we require:

(i)0 <
�3 + k

2 + k
< 1 ) k > 3

and

(ii)0 <
k

2 + k
 1 ) k > 0

Thus monotonic convergence should occur near the root for k > 3.

Choose k=4, such that f(x) = 3 sin(x)+4x�5
6 . Verifying that k=4 gives expected monotonic convergence

with Nmax=20:

>> f=inline(’(3*sin(x) + 4*x - 5)/6’);

4

+1T for explanation
of divergence

+1T for convergence 
conditions
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18 x 2 (a, b). Similarly, the error reduces, and hence the scheme converges, in an oscillatory manner if
�1 < f 0(x) < 0 8 x 2 (a, b).

Monotonic convergence requires 0 < f 0(x) < 1 for all x around the root. If xN remains in the range
(�⇡,�⇡

2 ), for monotonic convergence, we require:

(i)0 <
�3 + k

2 + k
< 1 ) k > 3

and

(ii)0 <
k

2 + k
 1 ) k > 0

Thus monotonic convergence should occur near the root for k > 3.

Choose k=4, such that f(x) = 3 sin(x)+4x�5
6 . Verifying that k=4 gives expected monotonic convergence

with Nmax=20:

>> f=inline(’(3*sin(x) + 4*x - 5)/6’);

4

+1T for explanation
of divergence

+1T for convergence 
conditions

xN+1 = f(xN ) = f(x⇤) + (xN � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN � x⇤)f
0(x⇤)

Recall that the truncation error in the N th iterate is eN .

) eN+1 ⇡ eNf 0(x⇤)

Thus the iteration will diverge if |f 0(x⇤)| = |3 cos(x⇤)|
2 > 1, which is the case for root x⇤ = �2.8832...

Thus convergence does not occur.

(ii) Recall that the truncation error in the N th iterate is eN = xN � x⇤.

eN+1 = xN+1 � x⇤

= f(xN )� f(x⇤)

= f 0(c)(xN � x⇤) by the Mean Value Theorem for some c 2 (xN , x⇤)

= f 0(c)eN

Thus the error reduces, and hence the scheme converges, if |f 0(x)| < 1 8 x 2 (�⇡,�⇡
2 ).

For f(x) = 3 sin(x)+kx�5
2+k , f 0(x) = 3 cos(x)+k

2+k ,

And for xN 2 (�⇡,�⇡
2 ),�1 < cos(xN ) < 0,

) �3+k
2+k < f 0(x) < k

2+k

So for convergence we require:

(i)� 1 <
�3 + k

2 + k
< 1 ) k >

1

2

and

(ii)� 1 <
k

2 + k
< 1 ) k > �1

Thus convergence is guaranteed for k > 1
2 .

(iii) The error reduces monotonically, and hence the scheme converges monotonically, if 0  f 0(x) <
18 x 2 (a, b). Similarly, the error reduces, and hence the scheme converges, in an oscillatory manner if
�1 < f 0(x) < 0 8 x 2 (a, b).

Monotonic convergence requires 0 < f 0(x) < 1 for all x around the root. If xN remains in the range
(�⇡,�⇡

2 ), for monotonic convergence, we require:

(i)0 <
�3 + k

2 + k
< 1 ) k > 3

and

(ii)0 <
k

2 + k
 1 ) k > 0

Thus monotonic convergence should occur near the root for k > 3.

Choose k=4, such that f(x) = 3 sin(x)+4x�5
6 . Verifying that k=4 gives expected monotonic convergence

with Nmax=20:

>> f=inline(’(3*sin(x) + 4*x - 5)/6’);

4

+1T for explanation
of divergence

+1T for convergence 
conditions

xN+1 = f(xN ) = f(x⇤) + (xN � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN � x⇤)f
0(x⇤)

Recall that the truncation error in the N th iterate is eN .

) eN+1 ⇡ eNf 0(x⇤)

Thus the iteration will diverge if |f 0(x⇤)| = |3 cos(x⇤)|
2 > 1, which is the case for root x⇤ = �2.8832...

Thus convergence does not occur.

(ii) Recall that the truncation error in the N th iterate is eN = xN � x⇤.

eN+1 = xN+1 � x⇤

= f(xN )� f(x⇤)

= f 0(c)(xN � x⇤) by the Mean Value Theorem for some c 2 (xN , x⇤)

= f 0(c)eN

Thus the error reduces, and hence the scheme converges, if |f 0(x)| < 1 8 x 2 (�⇡,�⇡
2 ).

For f(x) = 3 sin(x)+kx�5
2+k , f 0(x) = 3 cos(x)+k

2+k ,

And for xN 2 (�⇡,�⇡
2 ),�1 < cos(xN ) < 0,

) �3+k
2+k < f 0(x) < k

2+k

So for convergence we require:

(i)� 1 <
�3 + k

2 + k
< 1 ) k >

1

2

and

(ii)� 1 <
k

2 + k
< 1 ) k > �1

Thus convergence is guaranteed for k > 1
2 .

(iii) The error reduces monotonically, and hence the scheme converges monotonically, if 0  f 0(x) <
18 x 2 (a, b). Similarly, the error reduces, and hence the scheme converges, in an oscillatory manner if
�1 < f 0(x) < 0 8 x 2 (a, b).

Monotonic convergence requires 0 < f 0(x) < 1 for all x around the root. If xN remains in the range
(�⇡,�⇡

2 ), for monotonic convergence, we require:

(i)0 <
�3 + k

2 + k
< 1 ) k > 3

and

(ii)0 <
k

2 + k
 1 ) k > 0

Thus monotonic convergence should occur near the root for k > 3.

Choose k=4, such that f(x) = 3 sin(x)+4x�5
6 . Verifying that k=4 gives expected monotonic convergence

with Nmax=20:

>> f=inline(’(3*sin(x) + 4*x - 5)/6’);

4

+1T for explanation
of divergence

+1T for convergence 
conditions

[student answer]

1 "maths" mark for this explanation

A "rigorous proof" might need more detail and precision, not required  
here (you could additionally cite a textbook for a more rigorous  
argument or a general theorem).

Question 3 Use the program to solve (4) by fixed-point iteration by taking

h(F ) =
F

2 + k
(7a)

in (6), so that

f(x) =
3 sinx+ kx� 5

2 + k
, (7b)

for some constant k.

(i) First run the program with k = 0, ✏ = 10
�5

, x0 = �2, Nmax = 10. Plot y = f(x)
and y = x on the same graph, and use these plots to show why convergence should

not occur. Explain the divergence by identifying a theoretical criterion that has been

violated.
4

(ii) Determine the values of k for which convergence is guaranteed if xN remains in the

range (�⇡,�⇡/2).

(iii) Choose, giving reasons, a value of k for which monotonic convergence should occur

near the root, and also a value for which oscillatory convergence should occur near

the root. Verify that these two values of k give the expected behaviour, by running

the program with Nmax = 20.

(iv) Also run the case k = 16. This should converge only slowly, so set Nmax = 50.

Discuss whether the truncation error is expected to be less than 10
�5

in this case?

(v) Discuss whether your results are consistent with first-order convergence.

Question 4 Now use your program to find the double root of equation (5a) by fixed-

point iteration by taking

h(F ) =
1
20 F , (8a)

in (6), so that

f(x) = 1
20(�x3 + 8.5x2 + 8) . (8b)

By considering f 0
(x⇤) explain why convergence will be slow at a multiple root for any

choice of di↵erentiable function h in (6).

In your calculations some care may be needed over the choice of x0. Also,

(a) since convergence will be slow, take Nmax = 1000;

(b) suppress the printing of each iterate, but print out the final values of N and xN .

Is this an example of first-order convergence? Does the termination criterion ensure a

truncation error of less than 10
�5

?

Note: it can be shown that the truncation error ✏N is asymptotic to 40/(7N) as N ! 1.

Newton-Raphson Iteration

A refinement of (6) is to let h depend on the derivatives of F , i.e.

f(x) = x� h(F, F 0, F 00, . . .) . (9a)

In Newton-Raphson iteration

h =
F

F 0 . (9b)

4
The references at the end may prove helpful.
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Q3

It says "discuss" so it is not sufficient to simply answer "no" !

21 -2.8819244 0.7277918
22 -2.8822816 0.7277811
23 -2.8825417 0.7277733
24 -2.8827309 0.7277675
25 -2.8828687 0.7277631
26 -2.8829689 0.7277596
27 -2.8830419 0.7277568
28 -2.8830949 0.7277542
29 -2.8831336 0.7277518
30 -2.8831617 0.7277491
31 -2.8831822 0.7277460
32 -2.8831971 0.7277421
33 -2.8832079 0.7277370
34 -2.8832158 0.7277302

Now

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN�1 � x⇤)f
0(x⇤)

Thus

xN � xN�1 ⇡ (x⇤ � xN�1) + (xN�1 � x⇤)f
0(x⇤)

= (xN�1 � x⇤)(f
0(x⇤)� 1)

⇡ (f 0(x⇤)� 1){xN � x⇤
f 0(x⇤)

}

) (xN � x⇤) ⇡ (xN � xN�1){
f 0(x⇤)

f 0(x⇤)� 1
}

Since |xN � xN�1| < ✏ when iteration is terminated, |xN � x⇤| is greater than ✏ = 10�5 by a factor of
approx

|f 0(x⇤)|
|f 0(x⇤)� 1|

For k=16, f 0(x) = 3 cos(x)+16
18 , so for x⇤ ⇡ �2.88323687,

|f 0(x⇤)|
|f 0(x⇤)� 1| ⇡ 2.6731...

Thus for the case k=16, the truncation error is expected to be greater than 10�5.

(v) If the truncation error in the N th iterate is eN = xN � x⇤, the method is said to have pth order
convergence if:

|eN�1| < ⌘ ) |eN |  C|eN�1|p

Thus this method has first-order convergence if |eN |/[eN�1| tends to some constant, C < 1. The final
column displaying |eN |/[eN�1| in the tables for k=4 and k = 3

2 are consistent with this condition for
first-order convergence, with C ⇡ 0.4 for k = 4 and C ⇡ 0.727 for k = 3

2 .

Question 4

The modified program to find the double root of equation (5a) by fixed-point iteration by taking

h(F ) =
F

20

7

+1T for discussion
of truncation error
in case of slow
convergence

+0.5T for order of
convergence

[ from student answer, here is part of a "maths" explanation (1 mark): ] 

21 -2.8819244 0.7277918
22 -2.8822816 0.7277811
23 -2.8825417 0.7277733
24 -2.8827309 0.7277675
25 -2.8828687 0.7277631
26 -2.8829689 0.7277596
27 -2.8830419 0.7277568
28 -2.8830949 0.7277542
29 -2.8831336 0.7277518
30 -2.8831617 0.7277491
31 -2.8831822 0.7277460
32 -2.8831971 0.7277421
33 -2.8832079 0.7277370
34 -2.8832158 0.7277302

Now

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN�1 � x⇤)f
0(x⇤)

Thus

xN � xN�1 ⇡ (x⇤ � xN�1) + (xN�1 � x⇤)f
0(x⇤)

= (xN�1 � x⇤)(f
0(x⇤)� 1)

⇡ (f 0(x⇤)� 1){xN � x⇤
f 0(x⇤)

}

) (xN � x⇤) ⇡ (xN � xN�1){
f 0(x⇤)

f 0(x⇤)� 1
}

Since |xN � xN�1| < ✏ when iteration is terminated, |xN � x⇤| is greater than ✏ = 10�5 by a factor of
approx

|f 0(x⇤)|
|f 0(x⇤)� 1|

For k=16, f 0(x) = 3 cos(x)+16
18 , so for x⇤ ⇡ �2.88323687,

|f 0(x⇤)|
|f 0(x⇤)� 1| ⇡ 2.6731...

Thus for the case k=16, the truncation error is expected to be greater than 10�5.

(v) If the truncation error in the N th iterate is eN = xN � x⇤, the method is said to have pth order
convergence if:

|eN�1| < ⌘ ) |eN |  C|eN�1|p

Thus this method has first-order convergence if |eN |/[eN�1| tends to some constant, C < 1. The final
column displaying |eN |/[eN�1| in the tables for k=4 and k = 3

2 are consistent with this condition for
first-order convergence, with C ⇡ 0.4 for k = 4 and C ⇡ 0.727 for k = 3

2 .

Question 4

The modified program to find the double root of equation (5a) by fixed-point iteration by taking

h(F ) =
F

20

7

+1T for discussion
of truncation error
in case of slow
convergence

+0.5T for order of
convergence

<latexit sha1_base64="cSxUXYyVugT5pLGqZayoSDYOkWc="></latexit>

[Hence, at stopping point

|eN | . ✏|f 0
(x⇤)|

|f 0(x⇤)� 1|
⇤

<latexit sha1_base64="7kW7ZUHOnrUIsKWYPaHO3k506rU="></latexit>

[subtract xN�1 from
both sides]

<latexit sha1_base64="P2ctho3tCkl8TauGIBCXx69uFC4="></latexit>

[ we stop iterating when |xN �xN�1| < ✏ with ✏ = 10�5, the question is whether
the resulting estimate of the root has an error less than ✏. ]

Q3

Question 3 Use the program to solve (4) by fixed-point iteration by taking

h(F ) =
F

2 + k
(7a)

in (6), so that

f(x) =
3 sinx+ kx� 5

2 + k
, (7b)

for some constant k.

(i) First run the program with k = 0, ✏ = 10
�5

, x0 = �2, Nmax = 10. Plot y = f(x)
and y = x on the same graph, and use these plots to show why convergence should

not occur. Explain the divergence by identifying a theoretical criterion that has been

violated.
4

(ii) Determine the values of k for which convergence is guaranteed if xN remains in the

range (�⇡,�⇡/2).

(iii) Choose, giving reasons, a value of k for which monotonic convergence should occur

near the root, and also a value for which oscillatory convergence should occur near

the root. Verify that these two values of k give the expected behaviour, by running

the program with Nmax = 20.

(iv) Also run the case k = 16. This should converge only slowly, so set Nmax = 50.

Discuss whether the truncation error is expected to be less than 10
�5

in this case?

(v) Discuss whether your results are consistent with first-order convergence.

Question 4 Now use your program to find the double root of equation (5a) by fixed-

point iteration by taking

h(F ) =
1
20 F , (8a)

in (6), so that

f(x) = 1
20(�x3 + 8.5x2 + 8) . (8b)

By considering f 0
(x⇤) explain why convergence will be slow at a multiple root for any

choice of di↵erentiable function h in (6).

In your calculations some care may be needed over the choice of x0. Also,

(a) since convergence will be slow, take Nmax = 1000;

(b) suppress the printing of each iterate, but print out the final values of N and xN .

Is this an example of first-order convergence? Does the termination criterion ensure a

truncation error of less than 10
�5

?

Note: it can be shown that the truncation error ✏N is asymptotic to 40/(7N) as N ! 1.

Newton-Raphson Iteration

A refinement of (6) is to let h depend on the derivatives of F , i.e.

f(x) = x� h(F, F 0, F 00, . . .) . (9a)

In Newton-Raphson iteration

h =
F

F 0 . (9b)

4
The references at the end may prove helpful.
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Data (left) and theory (right) are both consistent with 1st order convergence

Even more : the theory predicts (correctly) the limit of the sequence in the  
right column (this was not checked in the student report but it is in the model  
answer, also other nice observations, worthy of "excellence marks") 

21 -2.8819244 0.7277918
22 -2.8822816 0.7277811
23 -2.8825417 0.7277733
24 -2.8827309 0.7277675
25 -2.8828687 0.7277631
26 -2.8829689 0.7277596
27 -2.8830419 0.7277568
28 -2.8830949 0.7277542
29 -2.8831336 0.7277518
30 -2.8831617 0.7277491
31 -2.8831822 0.7277460
32 -2.8831971 0.7277421
33 -2.8832079 0.7277370
34 -2.8832158 0.7277302

Now

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN�1 � x⇤)f
0(x⇤)

Thus

xN � xN�1 ⇡ (x⇤ � xN�1) + (xN�1 � x⇤)f
0(x⇤)

= (xN�1 � x⇤)(f
0(x⇤)� 1)

⇡ (f 0(x⇤)� 1){xN � x⇤
f 0(x⇤)

}

) (xN � x⇤) ⇡ (xN � xN�1){
f 0(x⇤)

f 0(x⇤)� 1
}

Since |xN � xN�1| < ✏ when iteration is terminated, |xN � x⇤| is greater than ✏ = 10�5 by a factor of
approx

|f 0(x⇤)|
|f 0(x⇤)� 1|

For k=16, f 0(x) = 3 cos(x)+16
18 , so for x⇤ ⇡ �2.88323687,

|f 0(x⇤)|
|f 0(x⇤)� 1| ⇡ 2.6731...

Thus for the case k=16, the truncation error is expected to be greater than 10�5.

(v) If the truncation error in the N th iterate is eN = xN � x⇤, the method is said to have pth order
convergence if:

|eN�1| < ⌘ ) |eN |  C|eN�1|p

Thus this method has first-order convergence if |eN |/[eN�1| tends to some constant, C < 1. The final
column displaying |eN |/[eN�1| in the tables for k=4 and k = 3

2 are consistent with this condition for
first-order convergence, with C ⇡ 0.4 for k = 4 and C ⇡ 0.727 for k = 3

2 .

Question 4

The modified program to find the double root of equation (5a) by fixed-point iteration by taking

h(F ) =
F

20

7

+1T for discussion
of truncation error
in case of slow
convergence

+0.5T for order of
convergence

q3_fixedpoint1(f,-2,20 );
N xN |eN/eN-1|
1 -2.6213154
2 -2.8294373 0.2054035
3 -2.8731801 0.1869296
4 -2.8813873 0.1839113
5 -2.8828977 0.1833783
6 -2.8831747 0.1832765
7 -2.8832255 0.1832313
8 -2.8832348 0.1830783

Clearly this convergence is monotonic, as illustrated by this graph given by program on page 14:

cobweb_k4

−3.5 −3 −2.5 −2 −1.5
−3.5

−3

−2.5

−2

−1.5

x

y

Figure 3: A graph displaying the monotonic convergence near root for k=4

(iii) Oscillatory convergence requires �1 < f 0(x) < 0 for all x around the root. If xN remains in the

range (�⇡,� 3⇡
4 )(note:� ⇡ < �2.8832.. < � 3⇡

4 ),�1 < cosxN < �
p
2
2 . So for oscillatory convergence, we

require:

(i)� 1 <
�3 + k

2 + k
< 0 ) 1

2
< k < 3

and

(ii)� 1 <
� 3

p
2

2 + k

2 + k
< 0 ) �4 + 3

p
2

4
< k <

3
p
2

2

Thus oscillatory convergence should occur near the root for 1
2 < k < 3

p
2

2 .

Choose k = 3
2 , such that f(x) = 6 sin(x)+3x�10

7 . Verifying that k = 3
2 gives expected oscillatory conver-

gence with Nmax=20:

>> f=inline(’(6*sin(x) + 3*x - 10)/7’);

q3_fixedpoint1(f,-2,20 );
N xN |eN/eN-1|
1 -3.0651121
2 -2.8076818 0.4154227
3 -2.9127840 0.3910668
4 -2.8713224 0.4032384
5 -2.8879884 0.3988001
6 -2.8813332 0.4006404

5

xN+1 = f(xN ) = f(x⇤) + (xN � x⇤)f
0(x⇤) + ...

⇡ x⇤ + (xN � x⇤)f
0(x⇤)

Recall that the truncation error in the N th iterate is eN .

) eN+1 ⇡ eNf 0(x⇤)

Thus the iteration will diverge if |f 0(x⇤)| = |3 cos(x⇤)|
2 > 1, which is the case for root x⇤ = �2.8832...

Thus convergence does not occur.

(ii) Recall that the truncation error in the N th iterate is eN = xN � x⇤.

eN+1 = xN+1 � x⇤

= f(xN )� f(x⇤)

= f 0(c)(xN � x⇤) by the Mean Value Theorem for some c 2 (xN , x⇤)

= f 0(c)eN

Thus the error reduces, and hence the scheme converges, if |f 0(x)| < 1 8 x 2 (�⇡,�⇡
2 ).

For f(x) = 3 sin(x)+kx�5
2+k , f 0(x) = 3 cos(x)+k

2+k ,

And for xN 2 (�⇡,�⇡
2 ),�1 < cos(xN ) < 0,

) �3+k
2+k < f 0(x) < k

2+k

So for convergence we require:

(i)� 1 <
�3 + k

2 + k
< 1 ) k >

1

2

and

(ii)� 1 <
k

2 + k
< 1 ) k > �1

Thus convergence is guaranteed for k > 1
2 .

(iii) The error reduces monotonically, and hence the scheme converges monotonically, if 0  f 0(x) <
18 x 2 (a, b). Similarly, the error reduces, and hence the scheme converges, in an oscillatory manner if
�1 < f 0(x) < 0 8 x 2 (a, b).

Monotonic convergence requires 0 < f 0(x) < 1 for all x around the root. If xN remains in the range
(�⇡,�⇡

2 ), for monotonic convergence, we require:

(i)0 <
�3 + k

2 + k
< 1 ) k > 3

and

(ii)0 <
k

2 + k
 1 ) k > 0

Thus monotonic convergence should occur near the root for k > 3.

Choose k=4, such that f(x) = 3 sin(x)+4x�5
6 . Verifying that k=4 gives expected monotonic convergence

with Nmax=20:

>> f=inline(’(3*sin(x) + 4*x - 5)/6’);

4

+1T for explanation
of divergence

+1T for convergence 
conditions

<latexit sha1_base64="mO0Kfn5zr8+W82Aj4JN0tP0/P3c=">AAACEnicbVC7TsMwFHXKq4RXgZHFokWCpUoQKgwgVWJhLBJtkdqounEcatWxI9tBVFG/gYVfYWEAIVYmNv4Gt3QAypmOzrnPE6acaeN5n05hbn5hcam47K6srq1vlDa3WlpmitAmkVyq6xA05UzQpmGG0+tUUUhCTtvh4Hzst2+p0kyKKzNMaZDAjWAxI2Cs1CsddFNQobzLayQZ5V0hmYioMG4nAgM4lgpXBmdHlcAd9Uplr+pNgGeJPyVlNEWjV/roRpJkiR1HOGjd8b3UBDkowwinI7ebaZoCGcAN7VgqIKE6yCcvjfCeVaLJ/lgKgyfqz44cEq2HSWgrEzB9/dcbi/95nczEJ0HORJoZKsj3ojjj2Eg8zgdHTFFi+NASIIrZWzHpgwJibIquDcH/+/IsaR1W/Vr16PKwXD+dxlFEO2gX7SMfHaM6ukAN1EQE3aNH9IxenAfnyXl13r5LC860Zxv9gvP+BfBZnPA=</latexit>

[data for k = 4]

[ from student answer ] 



Q4 apply the method to the double root of 

(i) Binary search is first-order convergent.

(ii) Fixed-point iteration, when convergent, is in general first-order convergent for a simple

root, i.e. one with F 0
(x⇤) 6= 0. However, Newton-Raphson iteration, when convergent, is

second-order convergent for a simple root, but only first-order convergent for a multiple

root

Examples

The cases to be studied as examples are

F (x) ⌘ 2x� 3 sinx+ 5 = 0 , (4)

and

F (x) ⌘ x3 � 8.5x2 + 20x� 8 = 0 . (5a)

Note that equation (5a) can be factorised and rewritten as

F (x) ⌘
�
x� 1

2

�
(x� 4)

2
= 0 . (5b)

Question 1 Show, with the help of a graph, that equation (4) has exactly one root

(which is in fact �2.88323687 . . . ).

Binary Search

Programming Task: write a program to solve equation (4) by binary search.Provide

for termination of the iteration as soon as the truncation error is guaranteed to be less

than 0.5 ⇥ 10
�5

, and print out the number of iterations, N , as well as the estimate of

the root. Run the program for a number of suitable starting values to check that it is

working; include some of these results in your report.

Question 2 Suppose that the rounding error in evaluating F (x) in equation (4) is at

most � for |x| < ⇡. By considering a Taylor expansion of F (x) near x⇤, or otherwise,

estimate the accuracy that may be expected for the calculated value of the root.

Hint: note that |F 0
(x)| > 4 for �5⇡/4 < x < �3⇡/4.

Fixed-Point Iteration

There are many possible choices of f , e.g.

f(x) = x� h(F (x)) , (6)

for some function
3 h(F ) such that h(0) = 0.

Programming Task: write a program to implement the iteration scheme in equation (1)

for general f . Provide for termination of the process as soon as |xN � xN�1| < ✏ or when
N = Nmax, whichever occurs first. Print out the values of N and xN for each N , so that

you can watch the progress of the iteration.

3
Or functional.
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Question 3 Use the program to solve (4) by fixed-point iteration by taking

h(F ) =
F

2 + k
(7a)

in (6), so that

f(x) =
3 sinx+ kx� 5

2 + k
, (7b)

for some constant k.

(i) First run the program with k = 0, ✏ = 10
�5

, x0 = �2, Nmax = 10. Plot y = f(x)
and y = x on the same graph, and use these plots to show why convergence should

not occur. Explain the divergence by identifying a theoretical criterion that has been

violated.
4

(ii) Determine the values of k for which convergence is guaranteed if xN remains in the

range (�⇡,�⇡/2).

(iii) Choose, giving reasons, a value of k for which monotonic convergence should occur

near the root, and also a value for which oscillatory convergence should occur near

the root. Verify that these two values of k give the expected behaviour, by running

the program with Nmax = 20.

(iv) Also run the case k = 16. This should converge only slowly, so set Nmax = 50.

Discuss whether the truncation error is expected to be less than 10
�5

in this case?

(v) Discuss whether your results are consistent with first-order convergence.

Question 4 Now use your program to find the double root of equation (5a) by fixed-

point iteration by taking

h(F ) =
1
20 F , (8a)

in (6), so that

f(x) = 1
20(�x3 + 8.5x2 + 8) . (8b)

By considering f 0
(x⇤) explain why convergence will be slow at a multiple root for any

choice of di↵erentiable function h in (6).

In your calculations some care may be needed over the choice of x0. Also,

(a) since convergence will be slow, take Nmax = 1000;

(b) suppress the printing of each iterate, but print out the final values of N and xN .

Is this an example of first-order convergence? Does the termination criterion ensure a

truncation error of less than 10
�5

?

Note: it can be shown that the truncation error ✏N is asymptotic to 40/(7N) as N ! 1.

Newton-Raphson Iteration

A refinement of (6) is to let h depend on the derivatives of F , i.e.

f(x) = x� h(F, F 0, F 00, . . .) . (9a)

In Newton-Raphson iteration

h =
F

F 0 . (9b)

4
The references at the end may prove helpful.
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This time it does not say "discuss" but it is still not sufficient to simply 
answer "no" and "no" !

<latexit sha1_base64="B4mMIqwg7ogFcHZ9KmUlgCbIKR4=">AAACi3icbVFda9RAFJ3ErzVa3eqjLxe3gg+6bKq0S1EoiODTUqHbFnZDmExukqGTmTAzkQ0hf8af5Jv/xkmaB229D8PhnHvP3I+kEtzYxeK359+7/+Dho8nj4MnTvWfPp/svLoyqNcM1U0Lpq4QaFFzi2nIr8KrSSMtE4GVy/aXXL3+gNlzJc9tUGJU0lzzjjFpHxdOf24rqRO3aJSu7disVlylKG2xgpSzCCfAMGlUDU9LwFDWc08Z5Ql2BVZBxbSwo3Qu2QDmk5mjhYBevPu/idvU+7A7eOY0bMIWqRQoJAoWCS+tYaocKiZj2drnq34LnhfO7cY2CLp7OFvPFEHAXhCOYkTHO4umvbapYXbo5mKDGbMJFZaOWasuZwC7Y1gYryq5pjhsHJS3RRO2wyw7eOCaFzI2YKdfjwP5d0dLSmKZMXGZJbWFuaz35P21T22wZtVxWtUXJbj7KatFP3B8GUq6RWdE4QJnmrldgBdWUWXe+wC0hvD3yXXBxOA+P5h+/H85OP43rmJBX5DV5S0JyTE7JN3JG1oR5E2/uHXtLf8//4J/4Y67vjTUvyT/hf/0DZxPDYg==</latexit>

[ Note : if you consider Taylor up to first order then
you get xN = xN�1, this should be a hint that you
need to go to higher order ]

[ from student answer ] 

in (6), so that

f(x) =
�x3 + 8.5x2 + 8

20
is given on page 15, labelled

q4_fixedpoint2(x0, Nmax)

For Nmax=1000, x0=5,

>> q4_fixedpoint2(5,1000)
N= 740, xN= 4.0075342

Since f(x) = x � h(F (x)), then f 0(x) = 1 � h0(F (x))F 0(x). Since F 0(x⇤) = 0, as it is a double root,
f 0(x⇤) = 1.

Thus x⇤+ f 0(x⇤)(xN�1�x⇤) = xN�1. So in the Taylor expansion of xN = f(xN�1), we need to consider
higher orders,

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) +

1

2
f 00(x⇤)(xN�1 � x⇤)

2 + ...

⇡ xN�1 +
1

2
f 00(x⇤)(xN�1 � x⇤)

2

= xN�1 +
1

2
f 00(x⇤)(eN�1)

2

Thus convergence will be slow at a multiple root for any choice of di↵erentiable function h. Thus,

eN�1 ⇡ ±
|
p
2(xN � xN�1)|
|
p
f 00(x⇤)|

If the iterations are terminated when |xN � xN�1| < ✏,

|eN | ⇡ |

s
2✏

f 00(x⇤)
| = |

r
40✏

7
| ⇡ 0.007559

for ✏ = 10�5 and f 00(x⇤) = � 7
20 for double root x⇤ = 4. Thus the termination criterion does not ensure

a truncation error of less than 10�5.

For first-order convergence, must show that |eN |
|eN�1|  C for some constant C < 1.

Now it can be shown that the truncation error,

eN ⇠ 40

7N
as N ! 1

Thus |eN |
|eN�1| ! 1 as N ! 1, indicating slower than first-order convergence.

Newton-Raphson Iteration

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by Newton-Raphson iteration is shown on page 16, labelled

q5_newtonraphson1(x0,Nmax,tol)

8

+0.5T for slow 
convergence

+1C for correct code

+1T for trunc error

in (6), so that

f(x) =
�x3 + 8.5x2 + 8

20
is given on page 15, labelled

q4_fixedpoint2(x0, Nmax)

For Nmax=1000, x0=5,

>> q4_fixedpoint2(5,1000)
N= 740, xN= 4.0075342

Since f(x) = x � h(F (x)), then f 0(x) = 1 � h0(F (x))F 0(x). Since F 0(x⇤) = 0, as it is a double root,
f 0(x⇤) = 1.

Thus x⇤+ f 0(x⇤)(xN�1�x⇤) = xN�1. So in the Taylor expansion of xN = f(xN�1), we need to consider
higher orders,

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) +

1

2
f 00(x⇤)(xN�1 � x⇤)

2 + ...

⇡ xN�1 +
1

2
f 00(x⇤)(xN�1 � x⇤)

2

= xN�1 +
1

2
f 00(x⇤)(eN�1)

2

Thus convergence will be slow at a multiple root for any choice of di↵erentiable function h. Thus,

eN�1 ⇡ ±
|
p
2(xN � xN�1)|
|
p
f 00(x⇤)|

If the iterations are terminated when |xN � xN�1| < ✏,

|eN | ⇡ |

s
2✏

f 00(x⇤)
| = |

r
40✏

7
| ⇡ 0.007559

for ✏ = 10�5 and f 00(x⇤) = � 7
20 for double root x⇤ = 4. Thus the termination criterion does not ensure

a truncation error of less than 10�5.

For first-order convergence, must show that |eN |
|eN�1|  C for some constant C < 1.

Now it can be shown that the truncation error,

eN ⇠ 40

7N
as N ! 1

Thus |eN |
|eN�1| ! 1 as N ! 1, indicating slower than first-order convergence.

Newton-Raphson Iteration

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by Newton-Raphson iteration is shown on page 16, labelled

q5_newtonraphson1(x0,Nmax,tol)

8

+0.5T for slow 
convergence

+1C for correct code

+1T for trunc error

<latexit sha1_base64="sTUeDllF6Yad8NZTVcpxnUqVy6M="></latexit>

[ Taylor again, use f 0(x⇤) = 1
at double root ]

<latexit sha1_base64="uCC0732fK3o9WXYHe4yikSaKQEE="></latexit>

[ eN ⇡ eN�1 + f 00(x⇤)e2N�1/2
so (eN/eN�1) ! 1,
not first order ]

Q4 apply the method to the double root of 

(i) Binary search is first-order convergent.

(ii) Fixed-point iteration, when convergent, is in general first-order convergent for a simple

root, i.e. one with F 0
(x⇤) 6= 0. However, Newton-Raphson iteration, when convergent, is

second-order convergent for a simple root, but only first-order convergent for a multiple

root

Examples

The cases to be studied as examples are

F (x) ⌘ 2x� 3 sinx+ 5 = 0 , (4)

and

F (x) ⌘ x3 � 8.5x2 + 20x� 8 = 0 . (5a)

Note that equation (5a) can be factorised and rewritten as

F (x) ⌘
�
x� 1

2

�
(x� 4)

2
= 0 . (5b)

Question 1 Show, with the help of a graph, that equation (4) has exactly one root

(which is in fact �2.88323687 . . . ).

Binary Search

Programming Task: write a program to solve equation (4) by binary search.Provide

for termination of the iteration as soon as the truncation error is guaranteed to be less

than 0.5 ⇥ 10
�5

, and print out the number of iterations, N , as well as the estimate of

the root. Run the program for a number of suitable starting values to check that it is

working; include some of these results in your report.

Question 2 Suppose that the rounding error in evaluating F (x) in equation (4) is at

most � for |x| < ⇡. By considering a Taylor expansion of F (x) near x⇤, or otherwise,

estimate the accuracy that may be expected for the calculated value of the root.

Hint: note that |F 0
(x)| > 4 for �5⇡/4 < x < �3⇡/4.

Fixed-Point Iteration

There are many possible choices of f , e.g.

f(x) = x� h(F (x)) , (6)

for some function
3 h(F ) such that h(0) = 0.

Programming Task: write a program to implement the iteration scheme in equation (1)

for general f . Provide for termination of the process as soon as |xN � xN�1| < ✏ or when
N = Nmax, whichever occurs first. Print out the values of N and xN for each N , so that

you can watch the progress of the iteration.

3
Or functional.
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<latexit sha1_base64="7VXCtEOTlVDUhAHWc47K1jEgypI="></latexit>

[ used ✏ = 10�5 ]

<latexit sha1_base64="BSXIB/McDWjCzsTvw0AwcoP8v4Y=">AAACQHicbVDLShxBFK3WxEf7GnXppsgovnDoHkRFXAjZZCUGMo4wPWmqa26PhdVVRVW19ND0p7nJJ2Tn2o2LhJCtK2sei0Q9UHA451zurZMozowNggdvavrDx5nZuXl/YXFpeaW2unZlZK4ptKjkUl8nxABnAlqWWQ7XSgPJEg7t5Pbz0G/fgTZMim92oKCbkb5gKaPEOimutSNFdCKL8oRmVRkJyUQPhPU1KHAR0T/Fm0V8gSOilJYFLuLy4iCs8D6OUk1o2MTp9vZOEe/tYhhb35ub2K/iWj1oBCPgtySckDqa4DKu/Yx6kuaZW045MaYTBsp2S6ItoxwqP8oNKEJvSR86jgqSgemWowIqvOWUHk6ldk9YPFL/nShJZswgS1wyI/bGvPaG4nteJ7fpSbdkQuUWBB0vSnOOrcTDNnGPaaCWDxwhVDN3K6Y3xBVjXee+KyF8/eW35KrZCI8ah1+b9fOzSR1zaAN9QjsoRMfoHH1Bl6iFKLpHj+gX+u398J68P97fcXTKm8yso//gPb8AjxWtHA==</latexit>

repeating: xN ⇡ xN�1 +
1
2f

00(x⇤)e2N�1

in (6), so that

f(x) =
�x3 + 8.5x2 + 8

20
is given on page 15, labelled

q4_fixedpoint2(x0, Nmax)

For Nmax=1000, x0=5,

>> q4_fixedpoint2(5,1000)
N= 740, xN= 4.0075342

Since f(x) = x � h(F (x)), then f 0(x) = 1 � h0(F (x))F 0(x). Since F 0(x⇤) = 0, as it is a double root,
f 0(x⇤) = 1.

Thus x⇤+ f 0(x⇤)(xN�1�x⇤) = xN�1. So in the Taylor expansion of xN = f(xN�1), we need to consider
higher orders,

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) +

1

2
f 00(x⇤)(xN�1 � x⇤)

2 + ...

⇡ xN�1 +
1

2
f 00(x⇤)(xN�1 � x⇤)

2

= xN�1 +
1

2
f 00(x⇤)(eN�1)

2

Thus convergence will be slow at a multiple root for any choice of di↵erentiable function h. Thus,

eN�1 ⇡ ±
|
p
2(xN � xN�1)|
|
p
f 00(x⇤)|

If the iterations are terminated when |xN � xN�1| < ✏,

|eN | ⇡ |

s
2✏

f 00(x⇤)
| = |

r
40✏

7
| ⇡ 0.007559

for ✏ = 10�5 and f 00(x⇤) = � 7
20 for double root x⇤ = 4. Thus the termination criterion does not ensure

a truncation error of less than 10�5.

For first-order convergence, must show that |eN |
|eN�1|  C for some constant C < 1.

Now it can be shown that the truncation error,

eN ⇠ 40

7N
as N ! 1

Thus |eN |
|eN�1| ! 1 as N ! 1, indicating slower than first-order convergence.

Newton-Raphson Iteration

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by Newton-Raphson iteration is shown on page 16, labelled

q5_newtonraphson1(x0,Nmax,tol)

8

+0.5T for slow 
convergence

+1C for correct code

+1T for trunc error

[ from student answer ] 

in (6), so that

f(x) =
�x3 + 8.5x2 + 8

20
is given on page 15, labelled

q4_fixedpoint2(x0, Nmax)

For Nmax=1000, x0=5,

>> q4_fixedpoint2(5,1000)
N= 740, xN= 4.0075342

Since f(x) = x � h(F (x)), then f 0(x) = 1 � h0(F (x))F 0(x). Since F 0(x⇤) = 0, as it is a double root,
f 0(x⇤) = 1.

Thus x⇤+ f 0(x⇤)(xN�1�x⇤) = xN�1. So in the Taylor expansion of xN = f(xN�1), we need to consider
higher orders,

xN = f(xN�1) = f(x⇤) + (xN�1 � x⇤)f
0(x⇤) +

1

2
f 00(x⇤)(xN�1 � x⇤)

2 + ...

⇡ xN�1 +
1

2
f 00(x⇤)(xN�1 � x⇤)

2

= xN�1 +
1

2
f 00(x⇤)(eN�1)

2

Thus convergence will be slow at a multiple root for any choice of di↵erentiable function h. Thus,

eN�1 ⇡ ±
|
p
2(xN � xN�1)|
|
p
f 00(x⇤)|

If the iterations are terminated when |xN � xN�1| < ✏,

|eN | ⇡ |

s
2✏

f 00(x⇤)
| = |

r
40✏

7
| ⇡ 0.007559

for ✏ = 10�5 and f 00(x⇤) = � 7
20 for double root x⇤ = 4. Thus the termination criterion does not ensure

a truncation error of less than 10�5.

For first-order convergence, must show that |eN |
|eN�1|  C for some constant C < 1.

Now it can be shown that the truncation error,

eN ⇠ 40

7N
as N ! 1

Thus |eN |
|eN�1| ! 1 as N ! 1, indicating slower than first-order convergence.

Newton-Raphson Iteration

Programming Task

The program to solve 2x� 3 sin(x) + 5 = 0 by Newton-Raphson iteration is shown on page 16, labelled

q5_newtonraphson1(x0,Nmax,tol)

8

+0.5T for slow 
convergence

+1C for correct code

+1T for trunc error

[ estimating root numerically ] 

Theory and numerical result agree rather well, evidence that all is correct
<latexit sha1_base64="o6TDXeaNzoFCsqdWVJCpDj5chXY="></latexit>

Note ✏/x⇤ must be at least machine precision (⇠ 10�15) so best possible
relative error is of order

p
✏ ⇠ 10�7.

<latexit sha1_base64="SkZaIxi9H7r6R3HIl0gtMbNixU4="></latexit>

For single roots it would be of order ✏ (much more accurate)

Programming Task: modify your program to recalculate the root of equation (4), and

the double root of equation (5a), using Newton-Raphson iteration.

Question 5 For equation (4), experiment with various x0 until you have demonstrated

a case that converges, and also a case that has not converged in 10 iterations. In the

unconverged case, show graphically what happened in the first few iterations.

For both equation (4) and equation (5a) do your (converged) results bear out the theo-

retical orders of convergence? Comment on the e↵ects of rounding error.

Hint: you may want to use a smaller value for ✏.
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This question basically wants you to repeat the analysis of Q3 and Q4 for a 
different method

Q5  Newton Raphson method

The main trap is : the question is short, but doesn't mean that the answer 
will be short

(you need to re-consider several questions from previous sections)

 [ 2.5 "programming" and 2.5 "maths" marks are available ] 

Summary (so far)

You need to provide evidence that you have written the relevant 
programs and obtained the output required

Graphs are often good for this  
(or tables, or sequences of numbers) 

You need to explain the underlying mathematics

[ this gets you the   
  "programming" marks ]

[ this gets you the  
  "maths" marks ]

Don't be afraid to write equations
Simpler explanations are usually better than complicated ones 
(as long as they actually work)

If you can verify consistency of mathematical "theory" and 
computational "experiment", this is evidence that everything is working



Other things to remember

You have many demands on your time, don't spend too long worrying 
about (eg) the difference between 17/20 and 19/20.

Mathematical writing is designed to be read by humans 
... you can make this easy by nice layout, clearly labelled graphs, 
    properly formatted equations/tables, etc

Things that are "obvious" to you at time of writing may not be obvious if you 
read it again one week later (and they may not be obvious to the reader)  
... be self-critical of your explanations

The assessors will only give marks for things that you write in the 
report.  Make sure that you give evidence for the work that you did.

The are no marks for "good code", but good code will usually get you 
quicker to the right answer

[ see also "excellence"  
  marks ] ... finally

Please read carefully the project instructions,  
   the hand-in instructions, etc

Do feel free to ask us questions using the catam helpline  
   (although we are not going to tell you how you should answer 
    the questions!)

We hope the Computational Projects will give you insight into the 
mathematics that you learn in other courses ... and you might 
even enjoy some of the projects.

good luck !

You will decide how much time you are prepared to spend on CATAM  
... we recommend : don't leave it until the last minute 

the two IB core projects may differ in time required


