
0.1
So that your candidate number can be added to each project,
on the first page of each project write-up you should include the
project number at the top on the left hand side and should leave a
gap 11 cm wide by 5 cm deep in the top right hand corner. Your
name or user identifier should not appear anywhere in the write-up
(including any printouts), as the scripts are marked anonymously.
Do not use green or red text in your reports. Leave a margin
at least 2 cm wide at the left, and number each page, table and
graph.

Root Finding in One Dimension: Answer

• This project is an optional, introductory, non-examinable project. Unlike the other
projects there are no Tripos marks awarded for it.

• Unlike the other projects, you may collaborate as much as you like, and your College can
arrange a supervision on the project.

• This document is a model answer for the project. The IB Manual recommends that in
general six sides of A4 of text, excluding in-line graphs, tables, etc., should be plenty for
a clear concise report. Excluding in-line graphs, tables and printouts, this report comes
to about five pages.

• This Introductory Project, like many other Projects, has a raw marking scheme where
the maximum mark is 20. However, for each of the Core Projects and the Additional
Projects, the maximum Tripos mark is 40. The Tripos mark is obtained by doubling the
raw mark. You are reminded that a possible maximum of 160 Tripos marks are available
for the Part IB Computational Projects course.

• Please email comments to catam@maths.cam.ac.uk.

0.1 Root Finding in One Dimension

Question 1

Comments

Use titles,
etc. to
differentiate
parts of your
answers.

Remember
to append
printouts of
your
programs.

Figures can
be included
in-line,
overleaf on a
separate
page, or
clumped at
the end of
your project
(but in the
latter case
you must
include a
page
reference).

Black and
white figures
are fine.

In order to find the roots of 2x+ 5− 3 sinx = 0, it is sufficient to plot the range [−4,−1] because

(i) 2x+ 5 < −3 6 −|3 sinx| for x < −4,

(ii) 2x+ 5 > 3 > |3 sinx| for x > −1.

Hence there can be no root outside the range [−4,−1]. See figure 1 for plots of 2x+ 5 and
3 sinx in the range [−4,−1]; the program can be found on page 10.Marking

Scheme

+ 1
2

pro-
gramming

mark for
program and

graph.

−4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3

−2

−1

0

1

2

3

4

x

2*x+5

3*sin(x)

Figure 1: Plot of 2x+ 5 and 3 sinx.

Moreover, there can be no root in −4 < x < −π or −5/2 < x < −1 since 2x+ 5 and 3 sinx have+1 theory
mark for
choice of

bounds and
other

reasoning.

opposite signs in these ranges. That leaves the interval [−π,−5/2] where 2x+ 5 is increasing
from negative to zero and 3 sinx is decreasing from zero to negative, giving exactly one inter-
section. We conclude that there is only one root of 2x+ 5− 3 sinx = 0 and that it is in the
interval [−π,−5/2].

Make it
obvious that
you have
done the
multiple runs
requested.

Binary Search: Programming Task

A program using binary search to solve 2x+ 5− 3 sinx = 0 is listed on page 11. Results for a+1 1
2

pro-
gramming
marks for

program and
output.

Table 1: Binary search results

Initial Interval Number of Iterations Final Iterate Bound on Truncation Error

[−3.0,−2.0] 18 x18 = −2.8832359 . . . ±0.0000038 . . .

[−π,−5/2] 17 x17 = −2.8832414 . . . ±0.0000049 . . .

[−5π/4,−3π/4] 19 x19 = −2.8832397 . . . ±0.0000030 . . .

representative number of runs are listed in table 1.

July 2024/Part IB/0.1 Page 1 of 17 ©c University of Cambridge

Question 2

Suppose the final interval is [a, b]. If the computed values of F (a) and F (b) are both greater
in magnitude than δ > 0, then we can be sure that the exact values of F (a) and F (b) have
opposite sign, and the root x∗ lies in the interval (a, b). If the computed value of F (a), say, is
less in magnitude than δ, then the exact value may have the other sign, but will also be less in
magnitude than δ. Further,

F (a) ≈ F ′ (x∗) (a− x∗) ,

and hence in this case Give a math-
ematical
justification
of your
reasoning,
and use the
hint in the
question.

|a− x∗| ≈
∣∣∣∣ F (a)

F ′ (x∗)

∣∣∣∣ 6 δ

|F ′ (x∗)|
.

So the approximation 1
2(a+ b) for the root has an error bounded, more-or-less, by+1 theory

mark for
estimate of

accuracy.
1
2(b− a) +

δ

|F ′ (x∗) |
.

Given that |F ′(x)| > 4 for −5π/4 < x < −3π/4, and since x∗ ∈ (−5π/4,−3π/4), it follows that
if the iteration is terminated when 1

2(b− a) < 0.5× 10−5, the error is bounded by

0.5× 10−5 + 1
4δ .

Fixed-Point Iteration: Programming Task

A program using this method is listed on page 12.

Question 3

For F (x) = 2x+ 5− 3 sinx and k 6= −2, we seek a solution to F (x) = 0 by means of the
fixed-point iteration scheme

xN = f(xN−1) =
3 sinxN−1 + kxN−1 − 5

2 + k
. (1)

Use
paragraph
headings to
identify
answers to
different
parts of a
multi-part
question.

Divergence. The first few iterations with k = 0 and x0 = −2, are illustrated in figure 2. The
iteration rapidly settles down to the two-point oscillation shown in figure 3. The program
for figure 2 can be found on page 13; the program for figure 3 is almost identical and is
omitted. For xN close to x∗,+1 program-

ming mark
for graphs. xN = f (xN−1) = f (x∗) + f ′ (x∗) (xN−1 − x∗) + . . .

= x∗ + f ′ (x∗) (xN−1 − x∗) + (2)

Thus, writing εN = xN − x∗,
εN ≈ f ′ (x∗) εN−1 . (3)

It follows that the iteration will diverge if+1 theory
mark for

explaining
divergence. |f ′(x∗)| ≡

∣∣∣∣3 cosx∗ + k

2 + k

∣∣∣∣ > 1 (4)

This is the case for x∗ = −2.88323687 . . . and k = 0, which explains why the iteration in
figures 2 and 3 does not converge. Conversely the iteration can converge if |f ′(x∗)| < 1.

July 2024/Part IB/0.1 Page 2 of 17 ©c University of Cambridge

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

x

f(
x
)

x

(3*sin(x)−2)/2

Figure 2: The first few iterations based on (1) with k = 0 and x0 = −2.

Convergence. From the mean-value theorem we know that if a function f is continuous on
the closed interval [a, b], and differentiable on the open interval (a, b), there exists some
ξ ∈ (a, b) such that+1 theory

mark for
explaining

convergence
and

identifying
k > 1

2
.

f(b)− f(a) = f ′(ξ)(b− a) .

It follows that
xN − x∗ = f(xN−1)− f(x∗) = f ′(ξ)(xN−1 − x∗) ,

for some ξ in (xN−1, x∗). Hence if |f ′(ξ)| < 1 for all ξ ∈ [−π,−π/2], and if xN−1 is in this
interval, then, since f is continuous and the interval closed, it follows that the iteration
is a contraction mapping, the iterates will remain in this interval, and the iteration will
converge. Further,

|f ′(ξ)| =
∣∣∣∣(3 cos ξ + k)

(2 + k)

∣∣∣∣ < 1 for all ξ ∈ [−π,−π/2] if k > 1
2 .

Thus convergence is guaranteed if x0 ∈ [−π,−π/2] and k > 1
2 .

Monotonic/oscillatory convergence. Calculations also show that f ′(x∗) changes sign from+ 1
2

theory
mark for

explanation
of type of

convergence.

negative to positive as k increases through kc ≈ 2.9. Given a sufficiently good initial guess,
x0, iterations using a value of k slightly greater/less than kc should therefore yield rapid
monotonic/oscillatory convergence since f ′ (x∗) will be small and positive/negative. This
is illustrated in tables 2 and 3.

Table 2: Iterates with k = 3.5 and x0 = −2.

N xN εN εN/εN−1 f ′(xN)

0 -2.0000000 8.832369e-01
1 -2.6777986 2.054383e-01 0.2325970 0.1485300
2 -2.8571507 2.608618e-02 0.1269782 0.1128263
3 -2.8803442 2.892679e-03 0.1108894 0.1094173
4 -2.8829210 3.159219e-04 0.1092143 0.1090560
5 -2.8832024 3.444623e-05 0.1090340 0.1090168
6 -2.8832331 3.755134e-06 0.1090144 0.1090125
7 -2.8832365 4.093556e-07 0.1090122 0.1090120

July 2024/Part IB/0.1 Page 3 of 17 ©c University of Cambridge

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

x

f(
x
)

x

(3*sin(x)−2)/2

Figure 3: Later iterations based on (1) with k = 0 and x0 = −2 illustrating a two-point
oscillation.

Table 3: Iterates with k = 2.5 and x0 = −2.

N xN εN εN/εN−1 f ′(xN)

0 -2.0000000 8.832369e-01
1 -2.8284205 5.481637e-02 0.0620630 -0.0786852
2 -2.8878412 -4.604324e-03 -0.0839954 -0.0897628
3 -2.8828254 4.115123e-04 -0.0893752 -0.0889152
4 -2.8832735 -3.660414e-05 -0.0889503 -0.0889916
5 -2.8832336 3.257347e-06 -0.0889885 -0.0889848
6 -2.8832372 -2.898553e-07 -0.0889851 -0.0889854

Although
not
requested,
include
f ′(xN) in
tables 2, 3
and 4 as
support for
theory (with
the aim of
accruing a
bonus).

Tables can
be included
in-line,
overleaf on a
separate
page, or
clumped at
the end of
your project
(but in the
latter case
you must
include a
page
reference).

Slower convergence and magnitude of truncation error. Alternatively taking k = 16
and x0 = −2 results in the slower convergence illustrated in table 4. Further, we note

Table 4: Iterates with k = 16 and x0 = −2.

N xN εN εN/εN−1 f ′(xN)

0 -2.0000000 8.832369e-01
1 -2.2071051 6.761317e-01 0.7655158 0.7898504
2 -2.3736981 5.095388e-01 0.7536087 0.7689931
3 -2.5035020 3.797349e-01 0.7452521 0.7550165
4 -2.6023900 2.808468e-01 0.7395866 0.7458692
5 -2.6765887 2.066482e-01 0.7358039 0.7399189
...

...
...

...
...

30 -2.8831617 7.516634e-05 0.7277559 0.7277569
31 -2.8831822 5.470270e-05 0.7277553 0.7277560
32 -2.8831971 3.981016e-05 0.7277548 0.7277554
33 -2.8832079 2.897202e-05 0.7277545 0.7277549
34 -2.8832158 2.108451e-05 0.7277543 0.7277546

+1 1
2

pro-
gramming
marks for
programs

and tables
showing
different
types of

convergence
via

εN/εN−1.

Pending
bonus mark
for including
f ′(xN) in

tables.
from (2) that

xN − xN−1 ≈
[
f ′ (xN−1)− 1

]
(xN−1 − x∗) ≈

[
f ′ (xN−1)− 1

] (xN − x∗)
f ′ (x∗)

,

July 2024/Part IB/0.1 Page 4 of 17 ©c University of Cambridge

i.e. that

xN − x∗ ≈
(xN − xN−1)f ′ (x∗)
f ′ (xN−1)− 1

.

If the termination condition is that |xN − xN−1| < ε, then the above implies that
εN ≡ xN − x∗ may be larger than ε by a factor of approximately∣∣∣∣ f ′ (x∗)

f ′ (x∗)− 1

∣∣∣∣ .
For k = 16

+1 theory
mark for

explanation
of the size of

truncation
error.

+ 1
2

theory
mark for

explanation
of first-order
convergence

using
εN/εN−1.

+ 1
2
bonus

mark for
comment

about
|f ′(x∗)|.

∣∣∣∣ f ′ (x∗)

f ′ (x∗)− 1

∣∣∣∣ ≈ 2.673 .

First-order convergence. The result (3) implies that if |f ′ (x∗)| < 1 and f ′ (x∗) 6= 0 then
fixed-point iteration should yield first-order convergence. Further

(i) the smaller |f ′(x∗)|, the quicker should be the convergence;

(ii) if |f ′(x∗)| < 1
2 fixed-point iteration has a faster rate of convergence than the bisection

method.

The final two columns of the tables 2, 3 and 4 are consistent with these predictions.

Double Roots: Question 4

The fixed-point iteration program was modified to solve x3 − 8.5x2 + 20x − 8 = 0 by taking
f(x) = 1

20(−x3 + 8.5x2 + 8) (see the program on page 14). The iterates starting with x0 = 4.5
are given in table 5. Include

7NεN/40,
which should
tend to 1, in
table for a
possible
bonus.

Table 5: Fixed-point iteration to double root with x0 = 4.5.

N xN εN εN/εN−1 7NεN/40

0 4.5000000 5.000000e-01
1 4.4500000 4.500000e-01 0.9000000 0.0787500
2 4.4100063 4.100063e-01 0.9111250 0.1435022
3 4.3771416 3.771416e-01 0.9198436 0.1979994
4 4.3495682 3.495682e-01 0.9268884 0.2446978
5 4.3260478 3.260478e-01 0.9327157 0.2852918
...

...
...

...
...

730 4.0075952 7.595174e-03 0.9986662 0.9702834
731 4.0075851 7.585057e-03 0.9986680 0.9703184
732 4.0075750 7.574966e-03 0.9986697 0.9703532
733 4.0075649 7.564903e-03 0.9986715 0.9703880
734 4.0075549 7.554867e-03 0.9986733 0.9704226
735 4.0075449 7.544857e-03 0.9986750 0.9704572
736 4.0075349 7.534874e-03 0.9986768 0.9704917

Convergence. At a double root F ′(x∗) = 0. Since

+1 program-
ming mark

for program
and table.

f ′(x∗) = 1− h′(F)F ′(x∗) ,

it follows that if h is differentiable, then at a double root f ′(x∗) = 1. From (3) this
means that the iteration is on the boundary between convergence and divergence; indeed
convergence in table 5 is clearly slower than before.

+ 1
2

theory
mark for

explaining
slow

convergence.

To understand this we take the Taylor expansion (2) to higher-order:

xN = xN−1 + 1
2f
′′ (x∗) (xN−1 − x∗)2 + (5)

July 2024/Part IB/0.1 Page 5 of 17 ©c University of Cambridge

It follows that

εN = εN−1 + 1
2f
′′ (x∗) ε

2
N−1 +

By seeking a solution of the form εN ∼ κ/N , we conclude that as N →∞, Identify
expression
that leads to
40/7, and
evaluate
asymptote
of εN for a
possible
bonus.

εN ∼ −
2

f ′′ (x∗) N
=

40

7N
,

Hence convergence is slower than first-order since as N →∞
εN
εN−1

→ 1 .

These two results are consistent with the final two columns of table 5.

Magnitude of error. It follows from (5) that

εN−1 ≈ ±

√
2 (xN − xN−1)

f ′′ (x∗)
.

Thus, if the iteration is terminated once |xN −xN−1| < ε, the truncation error in the root

+1 theory
mark for

identifying
truncation

error.

Pending
bonus for
including

7NεN/40 in
table, in

expanding
hint and for

evaluating
asymptote

of εN .

is given approximately by

|εN | ≈

∣∣∣∣∣
√

2ε

f ′′ (x∗)

∣∣∣∣∣ =

∣∣∣∣∣
√

40ε

7

∣∣∣∣∣ ≈ 0.00756 if ε = 10−5 .

This is consistent with column two of table 5, and we conclude that the termination
criterion does not ensure a truncation error in the root of less than ε = 10−5.

Newton-Raphson Iteration: Programming Task

Programs using Newton-Raphson iteration to calculate the root of 2x+ 5− 3 sinx = 0 and the
double root of x3 − 8.5x2 + 20x− 8 = 0 can be found on pages 15 and 16.

Question 5

Solution for the single root of F (x) = 2x− 3 sinx+ 5 = 0. In the case of this equation, the
first few Newton-Raphson iterations starting with x0 = −4.8 are illustrated in figure 4; the
program for this figure is listed on page 17. While the process does converge, if ε = 10−5

it does so only after 66 iterations.+1 program-
ming mark
for graph. If instead x0 = −4, then as illustrated in the table 6, the process converges in 4 iterations

+1 program-
ming mark

for program
and table.

so that |xN − xN−1| < ε = 10−5, and in 5 iterations so that |xN − xN−1| < ε = 10−10.
Note that in this and earlier calculations we have used the value of x5 as the de facto
‘exact’ solution to within rounding error.

Convergence. For xN−1 close to x∗,

xN = xN−1 −
F (xN−1)

F ′(xN−1)

= xN−1 −
F ′ (x∗) (xN−1 − x∗) + 1

2F
′′ (x∗) (xN−1 − x∗)2 + . . .

F ′ (x∗) + F ′′ (x∗) (xN−1 − x∗) + . . .
(6)

= x∗ + (xN−1 − x∗)− (xN−1 − x∗)
[
1− F ′′ (x∗)

2F ′ (x∗)
(xN−1 − x∗) + . . .

]
= x∗ +

F ′′ (x∗)

2F ′ (x∗)
(xN−1 − x∗)2 +

July 2024/Part IB/0.1 Page 6 of 17 ©c University of Cambridge

−8 −6 −4 −2 0 2 4 6 8
−15

−10

−5

0

5

10

15

20

x

2
x
−

3
s
in

(x
)+

5

x
0

x
1

x
2

Figure 4: First few Newton-Raphson iterations for F (x) = 2x − 3 sinx + 5 = 0 starting with
x0 = −4.8.

Table 6: Newton-Raphson iteration to single root with x0 = −4.

N xN εN εN/ (εN−1)
2

log |εN |/ log |εN−1| F ′′(xN)/2F ′(xn)

0 -4.000000000000000 -1.116763e+00
1 -2.669401797516753 2.138351e-01 0.1714576 -13.9680184 -0.1460399
2 -2.888959367133085 -5.722495e-03 -0.1251490 3.3472819 -0.0764422
3 -2.883239394297850 -2.521740e-06 -0.0770069 2.4965498 -0.0782039
4 -2.883236872558781 -4.969358e-13 -0.0781448 2.1977565 -0.0782047

5 -2.883236872558284 4.440892e-16 1.798e+09 1.2477978 -0.0782047

It follows that if the iterates converge, Evaluate K
and include
F ′′(xN)
2F ′(xn)

in
table 6 for a
possible
bonus.

εN ∼ K (εN−1)
2 as N →∞ , where K =

F ′′ (x∗)

2F ′ (x∗)
≈ −0.0782 .

The method is thus second-order since

+1 theory
mark for

explaining
convergence.

Pending
bonus for

evaluat-
ing K,

estimating
size of error,

and for
comparison.

log |εN |
log |εN−1|

→ 2 as N →∞ .

These two results are, on the whole, consistent with the first four entries in the final two Compare
with
fixed-point
iteration and
the bisection
method for a
possible
bonus.

columns of table 6. However, the fifth entry in the penultimate column shows a variation
because of rounding error.

We observe that convergence for Newton-Raphson iteration is, in this case, much faster
than fixed-point iteration or the bisection method.

Magnitude of error and rounding error. From (6),

εN−1 ∼ −(xN − xN−1) .

It follows that once the iteration has converged, and assuming no rounding error,

|εN | ∼ |K (εN−1)
2 | ∼ |K(xN − xN−1)2| 6 |K|ε2 .

July 2024/Part IB/0.1 Page 7 of 17 ©c University of Cambridge

Table 7: Newton-Raphson iteration to double root with x0 = 5 and ε = 10−5.

N xN εN εN/εN−1 log |εN |/ log |εN−1|
0 5.000000000 1.000000e+00
1 4.550000000 5.500000e-01 0.5500000
2 4.292485549 2.924855e-01 0.5317919 2.0563130
3 4.151672687 1.516727e-01 0.5185647 1.5341813
4 4.077379237 7.737924e-02 0.5101725 1.3568375
5 4.039103573 3.910357e-02 0.5053497 1.2667037
6 4.019659207 1.965921e-02 0.5027471 1.2121423
7 4.009856979 9.856979e-03 0.5013925 1.1757010
8 4.004935400 4.935400e-03 0.5007011 1.1497423
9 4.002469436 2.469436e-03 0.5003518 1.1303713
10 4.001235153 1.235153e-03 0.5001762 1.1153934
11 4.000617686 6.176855e-04 0.5000882 1.1034816
12 4.000308870 3.088700e-04 0.5000441 1.0937893
13 4.000154442 1.544418e-04 0.5000221 1.0857526
14 4.000077223 7.722263e-05 0.5000111 1.0789824
15 4.000038612 3.861176e-05 0.5000057 1.0732019
16 4.000019306 1.930602e-05 0.5000038 1.0682093
17 4.000009653 9.652994e-06 0.4999991 1.0638547

If ε = 10−5 then |εN | is bounded by |K|ε2 ≈ 7.8 × 10−12, which is consistent with the
results in column 2 of table 6. If ε = 10−10 then, after the fifth iteration, rounding
error dominates the above estimate since MATLAB’s double precision has an accuracy of
about 10−16 (again see table 6).

Solution for the double root of F (x) = x3 − 8.5x2 + 20x− 8 = 0. In the case of this equa-+ 1
2

pro-
gramming

mark for
program and

table.

tion, the first few Newton-Raphson iterations starting with x0 = 5 are given in table 7.

Convergence. For x∗ = 4, F ′ (x∗) = 0 and F ′′ (x∗) 6= 0, implying from result (6) above that Compare
with the
bisection
method for a
possible
bonus.

εN ∼ 1
2εN−1 .

Hence the last two columns of table 7 should tend to 1
2 and 1 (as is indeed the case). We

+1 theory
mark for

explaining
convergence.

Pending
bonus for
bisection

comparison.

note that in this case Newton-Raphson iteration has the same rate of convergence as the
bisection method, and that from (6)

xN − xN−1 ∼ −1
2εN−1 .

Include
calculation
of rounding
error for a
possible
bonus.

Rounding error. If ε is reduced from 10−5 to 10−10, the iteration continues as in table 8.
The larger-than-predicted error in the final iterate arises because division by the small
F ′ (xN−1) amplifies the rounding error in F (xN−1). More precisely, suppose that the
rounding error in evaluating a function is δ. Then it follows from the definition of F (x)
that close to the double root x∗ = 4 (where F (x∗) = F ′(x∗) = 0 and F ′′(x∗) = 7), that in
a computation

+ 1
2

theory
mark for

general
explanation.

+ 1
2
bonus

mark for
pending

bonuses and
rounding-

error
calculation.

F (xN−1) = F (x∗ + εN−1) ∼ 7
2ε

2
N−1 + δ and F ′(xN−1) ∼ 7εN−1 + δ .

Hence, while in exact arithmetic

εN = εN−1 −
F (xN−1)

F ′ (xN−1)
,

July 2024/Part IB/0.1 Page 8 of 17 ©c University of Cambridge

Table 8: Newton-Raphson iteration to double root with x0 = 5 and ε = 10−10.

N xN εN εN/εN−1 log |εN |/ log |εN−1|
18 4.000004826 4.826398e-06 0.4999897 1.0600237
19 4.000002413 2.413255e-06 0.5000116 1.0566212
20 4.000001206 1.206080e-06 0.4997730 1.0536240
21 4.000000602 6.017966e-07 0.4989692 1.0510129
22 4.000000302 3.015609e-07 0.5011010 1.0482393
23 4.000000147 1.467238e-07 0.4865479 1.0479823
24 4.000000064 6.370571e-08 0.4341880 1.0530215
25 4.000000032 3.183852e-08 0.4997750 1.0418612
26 3.999999968 -3.192455e-08 -1.0027018 0.9998437
27 3.999999968 -3.192455e-08 1.0000000 1.0000000

on a computer (and on the assumption that |δ| � |εN−1|)

εN ∼ εN−1 −
7
2ε

2
N−1 + δ

7εN−1 + δ

∼ 1
2εN−1 −

δ

7εN−1
+

Rounding error will be comparable with the update when εN−1 = O(δ
1
2). Table 8 is+1 bonus

mark for
quality of
write-up.

consistent with this result since, as noted above, MATLAB’s double precision has an
accuracy of about 10−16.

Max raw
mark: 20

Max Tripos
mark:
40=20x2

July 2024/Part IB/0.1 Page 9 of 17 ©c University of Cambridge

Program 0-1/question1.m to produce figure 1

% Plot 2*x+5 and 3*sin(x)

%

fplot(@(x)[2*x+5],[-4 -1 -4 4],’r’);

hold on;

fplot(@(x)[3*sin(x)],[-4 -1 -4 4],’b-.’);

xlabel(’x’); legend(’2*x+5’,’3*sin(x)’);

hold off;

%

% Output plot first in colour postscript and then as a pdf

% to leave options open for inclusion in write-up.

%

print -depsc ’question1’;

print -dpdf ’question1’;

July 2024/Part IB/0.1 Page 10 of 17 ©c University of Cambridge

Program 0-1/question2.m for question 2

% Bisection method to solve 2.0*x-3.0*sin(x)+5.0=0

%

% Define an anonymous function

% Set the tolerance for convergence

%

f=@(x)2.0*x-3.0*sin(x)+5.0;

tol=0.5e-5;

%

% Read in lower guess and higher guess

% Check that interval includes a zero and is increasing

%

yl=1.0; yu=1.0;

while yl*yu > 0

xl=input(’Please enter the lower end of initial interval [-3]: ’);

if isempty(xl)

xl=-3.0;

end

xu=input(’Please enter the upper end of initial interval [-2]: ’);

if isempty(xu)

xu=-2.0;

end

yl=f(xl);

yu=f(xu);

if yl*yu >= 0

disp(’Chosen interval does not include a zero’)

elseif yl >= yu

yl=1.0; yu=1.0;

disp(’Lower guess greater than the upper guess’)

end

end

%

% Start iteration & while xu-xl>2*tol keep interval halving

%

fprintf(’\nStarting iteration\n\n’)

n=0;

while((xu-xl) > 2.0*tol)

n=n+1;

xm=0.5*(xl+xu);

fprintf(’%2d %11.7f %13.6e %13.6e %13.6e\n’,n,xm,(xu-xl)/2,yl,yu)

ym=f(xm);

if yl*ym < 0

xu=xm;

yu=ym;

else

xl=xm;

yl=ym;

end

end

%

% xu-xl<2*tol; calculate xm (xu-xm<tol and xm-xl<tol); output results

%

n=n+1;

xm=0.5*(xl+xu);

fprintf(’%2d %11.7f %13.6e %13.6e %13.6e\n’,n,xm,(xu-xl)/2,yl,yu)

fprintf(’\nRoot is within %10.3e of %11.7f\n’,tol,xm)

July 2024/Part IB/0.1 Page 11 of 17 ©c University of Cambridge

Program 0-1/picard1.m for question 3

% Fixed-point interation method to solve 2*x-3*sin(x)+5=0

%

% Define an anonymous function

% Hard wire the solution to 15 decimal places (obtained by NR iteration)

% Set the tolerance for convergence

% Set the maximum number of iterations

%

f=@(x,k)(3*sin(x)+k*x-5)/(2+k);

fd=@(x,k)(3*cos(x)+k)/(2+k);

xexact = -2.8832368725582835;

tol = 1e-5;

nmax = 50;

%

% Input k and x

%

k=input(’Please enter k [3.5]: ’);

if isempty(k)

k=3.5;

end

x=input(’Please enter initial guess [-2]: ’);

if isempty(x)

x=-2;

end

%

% Initialise the iteration

% Output initial guess and error

%

n = 0;

err = 1;

epnew=x-xexact;

fprintf(’%2d %10.7f %13.6e\n’,n,x,epnew)

%

% Start the iteration

% Terminate when difference between successive guesses < tol

%

while(err>=tol & n<nmax)

n = n+1;

y = f(x,k);

epold=epnew;

epnew=y-xexact;

fprintf(’%2d %10.7f %13.6e %10.7f %10.7f\n’,n,y,epnew,epnew/epold,fd(y,k));

err = abs(y-x);

x = y;

end

July 2024/Part IB/0.1 Page 12 of 17 ©c University of Cambridge

Program 0-1/question3 1plot.m to produce figure 2

% Matlab plot for Figure 2, illustrating first few iterations:

k=0;

f=@(x)(3*sin(x)+k*x-5)/(2+k);

fplot(@(x)[x],[-4.5 -1 -4.5 -1],’r’);

hold on;

fplot(f,[-4.5 -1 -4.5 -1],’b--’);

legend(’x’,’(3*sin(x)-2)/2’);

% Find first few iterations explicitly: (Alternatively could simply take the

% first few values output directly by picard1.m)

niter=10;

x0=-2.0; xnew=x0;

for i=1:niter

x(i)=xnew;

x(i+1)=f(x(i));

xnew=x(i+1);

end

% ‘Join the dots’, to illustrate behaviour of iterates

xiter = [x(1) x(2) x(2) x(3) x(3) x(4) x(4) x(5) x(5)] ;

fiter = [x(2) x(2) x(3) x(3) x(4) x(4) x(5) x(5) x(6)];

plot(xiter,fiter,’black’)

% Label graph and distinguish curves:

xlabel(’x’);

ylabel(’f(x)’)

% If we want to put arrows to indicate direction of iteration

% one way is the following:

dd1=diff(xiter);

dd2=diff(fiter);

xx1=xiter(1:end-1);

ff1=fiter(1:end-1);

quiver(xx1,ff1,dd1,dd2,’black’);

hold off;

%

% Output plot first in colour postscript and then as a pdf

% to leave options open for inclusion in write-up.

%

print -depsc ’question3-1’;

print -dpdf ’question3-1’;

July 2024/Part IB/0.1 Page 13 of 17 ©c University of Cambridge

Program 0-1/picard2.m for question 4

% Fixed-point interation method to solve x^3 - 8.5x^2 + 20x - 8 = 0

%

% Define an anonymous function

% Hard wire the solution

% Set the tolerance for convergence

% Set the maximum number of iterations

%

f=@(x)(-x^3+8.5*x^2+8)/20;

xexact = 4;

tol = 1e-5;

nmax = 1000;

%

% Input x

%

x=input(’Please enter initial guess [4.5]: ’);

if isempty(x)

x=4.5;

end

%

% Initialise the iteration

% Output initial guess and error

%

n = 0;

err = 2*tol;

epnew=x-xexact;

fprintf(’%3d %10.7f %13.6e\n’,n,x,epnew)

%

% Start the iteration

% Terminate when difference between successive guesses < tol

%

while(err>=tol & n<nmax)

n = n+1;

y = f(x);

epold=epnew;

epnew=y-xexact;

if n <= 5 || n >= 730

fprintf(’%3d %10.7f %13.6e %10.7f’,n,y,epnew,epnew/epold);

fprintf(’ %10.7f\n’,7*n*epnew/40);

end

err = abs(y-x);

x = y;

end

July 2024/Part IB/0.1 Page 14 of 17 ©c University of Cambridge

Program 0-1/newton1.m for the first part of question 5

% Newton-Raphson interation method to solve F(x)=2*x-3*sin(x)+5=0

%

% Define an anonymous function

% Hard wire the solution to 15 decimal places (obtained by NR iteration)

% Set the maximum number of iterations

%

f=@(x)2*x-3*sin(x)+5;

fd=@(x)2-3*cos(x);

fdd=@(x)3*sin(x);

xexact=-2.883236872558284;

nmax = 100;

%

% Input initial guess and tolerance for convergence

%

x=input(’Please enter initial guess [-4]: ’);

if isempty(x)

x=-4;

end

tol=input(’Please enter initial tolerance [1e-5]: ’);

if isempty(tol)

tol = 1e-5;

elseif tol < 0

tol = -tol;

end

%

% Initialise the iteration

% Output initial guess and error

%

n = 0;

err = 2*tol;

epnew=x-xexact;

fprintf(’%2d %20.15f %13.6e\n’,n,x,epnew)

%

% Start the iteration

% Terminate when difference between successive guesses < tol

%

while(err>=tol & n<nmax)

n = n+1;

y = x - f(x)/fd(x);

epold=epnew;

epnew=y-xexact;

if abs(epnew/(epold*epold)) < 1

fprintf(’%2d %20.15f %13.6e %11.7f’,n,y,epnew,epnew/(epold*epold));

else

fprintf(’%2d %20.15f %13.6e %11.4g’,n,y,epnew,epnew/(epold*epold));

end

fprintf(’ %11.7f’ ,log(abs(epnew))/log(abs(epold)))

fprintf(’ %10.7f\n’,fdd(y)/(2*fd(y)))

err = abs(y-x);

x = y;

end

July 2024/Part IB/0.1 Page 15 of 17 ©c University of Cambridge

Program 0-1/newton2.m for the second part of question 5

% Newton-Raphson interation method to solve F(x)=x^3-8.5*x^2+20*x-8=0

%

% Define an anonymous function

% Hard wire the exact solution and set the maximum number of iterations

%

f=@(x)x*x*x-8.5*x*x+20*x-8;

fd=@(x)3*x*x-17*x+20;

xexact=4;

nmax = 50;

%

% Input initial guess and tolerance for convergence

%

x=input(’Please enter initial guess [5]: ’);

if isempty(x)

x=5;

end

tol=input(’Please enter initial tolerance [1e-5]: ’);

if isempty(tol)

tol = 1e-5;

elseif tol < 0

tol = -tol;

end

%

% Initialise the iteration

% Output initial guess and error

%

n = 0;

err = 2*tol;

epnew=x-xexact;

fprintf(’%2d %12.9f %13.6e\n’,n,x,epnew)

%

% Start the iteration

% Terminate when difference between successive guesses < tol

%

while(err>=tol & n<nmax)

n = n+1;

y = x - f(x)/fd(x);

epold=epnew;

epnew=y-xexact;

fprintf(’%2d %12.9f %13.6e %10.7f’,n,y,epnew,epnew/epold);

if n > 1

fprintf(’ %10.7f\n’,log(abs(epnew))/log(abs(epold)));

else

fprintf(’\n’);

end

err = abs(y-x);

x = y;

end

July 2024/Part IB/0.1 Page 16 of 17 ©c University of Cambridge

Program 0-1/question5 plot.m to produce figure 4

% Matlab plot for Figure 4, illustrating first few Newton-Raphson iterations:

x0 = -4.8;

f = @(x)(2*x-3*sin(x)+5);

f1 = @(x)(f(x0)-(x0-x)*(2-3*cos(x0))); % tangent at x0

fplot(f,[-8 8 -15 20]);

xlabel(’x’);

ylabel(’2x-3sin(x)+5’)

%legend(’2x-3sin(x)+5’);

hold on;

fplot(f1,[-8 8 -15 20],’--’);

fplot(@(x)[0*x],[-8 8 -15 20],’black’);

% Show the first few iterations:

x1=-0.42; % next iterate

f2= @(x)(f(x1)-(x1-x)*(2-3*cos(x1))); % tangent at x1

fplot(f2,[-8 8 -15 20],’--’);

x2=6.9; % next iterate

plot([x0 x0],[0 f(x0)],’black’);

plot([x1 x1],[0 f(x1)],’black’);

% Put text labels on graph:

str0=(’x_0’);

str1=(’x_1’);

str2=(’x_2’);

text(x0,0.5,str0);

text(x1,-1.5,str1);

text(x2,0.5,str2);

hold off;

%

% Output plot first in colour postscript and then as a pdf

% to leave options open for inclusion in write-up.

%

print -depsc ’question5’;

print -dpdf ’question5’;

July 2024/Part IB/0.1 Page 17 of 17 ©c University of Cambridge

