0.1

So that your candidate number can be added to each project, on the first page of each project write-up you should include the project number at the top on the left hand side and should leave a gap 11 cm wide by 5 cm deep in the top right hand corner. Your name or user identifier should not appear anywhere in the write-up (including any printouts), as the scripts are marked anonymously. Do not use green or red text in your reports. Leave a margin at least 2 cm wide at the left, and number each page, table and graph.

Root Finding in One Dimension: Answer

- This project is an optional, introductory, non-examinable project. Unlike the other projects there are no Tripos marks awarded for it.
- Unlike the other projects, you may collaborate as much as you like, and your College can arrange a supervision on the project.
- This document is a model answer for the project. The IB Manual recommends that in general six sides of A4 of text, excluding in-line graphs, tables, etc., should be plenty for a clear concise report. Excluding in-line graphs, tables and printouts, this report comes to about five pages.
- This Introductory Project, like many other Projects, has a raw marking scheme where the maximum mark is 20 . However, for each of the Core Projects and the Additional Projects, the maximum Tripos mark is 40 . The Tripos mark is obtained by doubling the raw mark. You are reminded that a possible maximum of 160 Tripos marks are available for the Part IB Computational Projects course.
- Please email comments to catam@maths.cam.ac.uk.

0.1 Root Finding in One Dimension

Question 1

Comments

In order to find the roots of $2 x+5-3 \sin x=0$, it is sufficient to plot the range $[-4,-1]$ because
(i) $2 x+5<-3 \leqslant-|3 \sin x|$ for $x<-4$,
(ii) $2 x+5>3 \geqslant|3 \sin x|$ for $x>-1$.

Hence there can be no root outside the range $[-4,-1]$. See figure 1 for plots of $2 x+5$ and
Marking
Scheme
$+\frac{1}{2}$ programming mark for program and graph.

Figure 1: Plot of $2 x+5$ and $3 \sin x$.
+1 theory mark for choice of bounds and other reasoning. $3 \sin x$ in the range $[-4,-1]$; the program can be found on page 10.

Moreover, there can be no root in $-4<x<-\pi$ or $-5 / 2<x<-1$ since $2 x+5$ and $3 \sin x$ have opposite signs in these ranges. That leaves the interval $[-\pi,-5 / 2]$ where $2 x+5$ is increasing from negative to zero and $3 \sin x$ is decreasing from zero to negative, giving exactly one intersection. We conclude that there is only one root of $2 x+5-3 \sin x=0$ and that it is in the interval $[-\pi,-5 / 2]$.

Binary Search: Programming Task

$+1 \frac{1}{2}$ programming marks for program and output.

A program using binary search to solve $2 x+5-3 \sin x=0$ is listed on page 11 . Results for a
Table 1: Binary search results

Initial Interval	Number of Iterations	Final Iterate	Bound on Truncation Error
$[-3.0,-2.0]$	18	$x_{18}=-2.8832359 \ldots$	$\pm 0.0000038 \ldots$
$[-\pi,-5 / 2]$	17	$x_{17}=-2.8832414 \ldots$	$\pm 0.0000049 \ldots$
$[-5 \pi / 4,-3 \pi / 4]$	19	$x_{19}=-2.8832397 \ldots$	$\pm 0.0000030 \ldots$

representative number of runs are listed in table 1.

Make it obvious that you have done the multiple runs requested.

Question 2

Suppose the final interval is $[a, b]$. If the computed values of $F(a)$ and $F(b)$ are both greater in magnitude than $\delta>0$, then we can be sure that the exact values of $F(a)$ and $F(b)$ have opposite sign, and the root x_{*} lies in the interval (a, b). If the computed value of $F(a)$, say, is less in magnitude than δ, then the exact value may have the other sign, but will also be less in magnitude than δ. Further,

$$
F(a) \approx F^{\prime}\left(x_{*}\right)\left(a-x_{*}\right)
$$

and hence in this case

$$
\left|a-x_{*}\right| \approx\left|\frac{F(a)}{F^{\prime}\left(x_{*}\right)}\right| \leqslant \frac{\delta}{\left|F^{\prime}\left(x_{*}\right)\right|}
$$

+1 theory mark for estimate of accuracy.

So the approximation $\frac{1}{2}(a+b)$ for the root has an error bounded, more-or-less, by

$$
\frac{1}{2}(b-a)+\frac{\delta}{\left|F^{\prime}\left(x_{*}\right)\right|} .
$$

Given that $\left|F^{\prime}(x)\right|>4$ for $-5 \pi / 4<x<-3 \pi / 4$, and since $x_{*} \in(-5 \pi / 4,-3 \pi / 4)$, it follows that if the iteration is terminated when $\frac{1}{2}(b-a)<0.5 \times 10^{-5}$, the error is bounded by

$$
0.5 \times 10^{-5}+\frac{1}{4} \delta
$$

Fixed-Point Iteration: Programming Task

A program using this method is listed on page 12.

Question 3

For $F(x)=2 x+5-3 \sin x$ and $k \neq-2$, we seek a solution to $F(x)=0$ by means of the fixed-point iteration scheme

$$
\begin{equation*}
x_{N}=f\left(x_{N-1}\right)=\frac{3 \sin x_{N-1}+k x_{N-1}-5}{2+k} \tag{1}
\end{equation*}
$$

Divergence. The first few iterations with $k=0$ and $x_{0}=-2$, are illustrated in figure 2. The iteration rapidly settles down to the two-point oscillation shown in figure 3. The program for figure 2 can be found on page 13 ; the program for figure 3 is almost identical and is omitted. For x_{N} close to x_{*},

$$
\begin{align*}
x_{N}=f\left(x_{N-1}\right) & =f\left(x_{*}\right)+f^{\prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)+\ldots \\
& =x_{*}+f^{\prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)+\ldots \tag{2}
\end{align*}
$$

Thus, writing $\epsilon_{N}=x_{N}-x_{*}$,

$$
\begin{equation*}
\epsilon_{N} \approx f^{\prime}\left(x_{*}\right) \epsilon_{N-1} \tag{3}
\end{equation*}
$$

It follows that the iteration will diverge if

$$
\begin{equation*}
\left|f^{\prime}\left(x_{*}\right)\right| \equiv\left|\frac{3 \cos x_{*}+k}{2+k}\right|>1 \tag{4}
\end{equation*}
$$

This is the case for $x_{*}=-2.88323687 \ldots$ and $k=0$, which explains why the iteration in figures 2 and 3 does not converge. Conversely the iteration can converge if $\left|f^{\prime}\left(x^{*}\right)\right|<1$.

Figure 2: The first few iterations based on (1) with $k=0$ and $x_{0}=-2$.
Convergence. From the mean-value theorem we know that if a function f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b), there exists some
+1 theory mark for explaining convergence and identifying $k>\frac{1}{2}$.
$+\frac{1}{2}$ theory mark for explanation of type of convergence.

$$
f(b)-f(a)=f^{\prime}(\xi)(b-a)
$$

It follows that

$$
x_{N}-x_{*}=f\left(x_{N-1}\right)-f\left(x_{*}\right)=f^{\prime}(\xi)\left(x_{N-1}-x_{*}\right)
$$

for some ξ in $\left(x_{N-1}, x_{*}\right)$. Hence if $\left|f^{\prime}(\xi)\right|<1$ for all $\xi \in[-\pi,-\pi / 2]$, and if x_{N-1} is in this interval, then, since f is continuous and the interval closed, it follows that the iteration is a contraction mapping, the iterates will remain in this interval, and the iteration will converge. Further,

$$
\left|f^{\prime}(\xi)\right|=\left|\frac{(3 \cos \xi+k)}{(2+k)}\right|<1 \quad \text { for all } \xi \in[-\pi,-\pi / 2] \text { if } k>\frac{1}{2}
$$

Thus convergence is guaranteed if $x_{0} \in[-\pi,-\pi / 2]$ and $k>\frac{1}{2}$.
Monotonic/oscillatory convergence. Calculations also show that $f^{\prime}\left(x_{*}\right)$ changes sign from negative to positive as k increases through $k_{c} \approx 2.9$. Given a sufficiently good initial guess, x_{0}, iterations using a value of k slightly greater/less than k_{c} should therefore yield rapid monotonic/ oscillatory convergence since $f^{\prime}\left(x_{*}\right)$ will be small and positive/negative. This is illustrated in tables 2 and 3 .

Table 2: Iterates with $k=3.5$ and $x_{0}=-2$.

N	x_{N}	ϵ_{N}	$\epsilon_{N} / \epsilon_{N-1}$	$f^{\prime}\left(x_{N}\right)$
0	-2.0000000	$8.832369 \mathrm{e}-01$		
1	-2.6777986	$2.054383 \mathrm{e}-01$	0.2325970	0.1485300
2	-2.8571507	$2.608618 \mathrm{e}-02$	0.1269782	0.1128263
3	-2.8803442	$2.892679 \mathrm{e}-03$	0.1108894	0.1094173
4	-2.8829210	$3.159219 \mathrm{e}-04$	0.1092143	0.1090560
5	-2.8832024	$3.444623 \mathrm{e}-05$	0.1090340	0.1090168
6	-2.8832331	$3.755134 \mathrm{e}-06$	0.1090144	0.1090125
7	-2.8832365	$4.093556 \mathrm{e}-07$	0.1090122	0.1090120

Figure 3: Later iterations based on (1) with $k=0$ and $x_{0}=-2$ illustrating a two-point oscillation.

Table 3: Iterates with $k=2.5$ and $x_{0}=-2$.

N	x_{N}	ϵ_{N}	$\epsilon_{N} / \epsilon_{N-1}$	$f^{\prime}\left(x_{N}\right)$
0	-2.0000000	$8.832369 \mathrm{e}-01$		
1	-2.8284205	$5.481637 \mathrm{e}-02$	0.0620630	-0.0786852
2	-2.8878412	$-4.604324 \mathrm{e}-03$	-0.0839954	-0.0897628
3	-2.8828254	$4.115123 \mathrm{e}-04$	-0.0893752	-0.0889152
4	-2.8832735	$-3.660414 \mathrm{e}-05$	-0.0889503	-0.0889916
5	-2.8832336	$3.257347 \mathrm{e}-06$	-0.0889885	-0.0889848
6	-2.8832372	$-2.898553 \mathrm{e}-07$	-0.0889851	-0.0889854

$$
\begin{gathered}
+1 \frac{1}{2} \text { pro- } \\
\text { gramming } \\
\text { marks for } \\
\text { programs } \\
\text { and tables } \\
\text { showing } \\
\text { different } \\
\text { types of } \\
\text { convergence } \\
\text { via } \\
\epsilon_{N} / \epsilon_{N-1} .
\end{gathered}
$$

Pending bonus mark for including $f^{\prime}\left(x_{N}\right)$ in tables.

Table 4: Iterates with $k=16$ and $x_{0}=-2$.

N	x_{N}	ϵ_{N}	$\epsilon_{N} / \epsilon_{N-1}$	$f^{\prime}\left(x_{N}\right)$
0	-2.0000000	$8.832369 \mathrm{e}-01$		
1	-2.2071051	$6.761317 \mathrm{e}-01$	0.7655158	0.7898504
2	-2.3736981	$5.095388 \mathrm{e}-01$	0.7536087	0.7689931
3	-2.5035020	$3.797349 \mathrm{e}-01$	0.7452521	0.7550165
4	-2.6023900	$2.808468 \mathrm{e}-01$	0.7395866	0.7458692
5	-2.6765887	$2.066482 \mathrm{e}-01$	0.7358039	0.7399189
\vdots	\vdots	\vdots	\vdots	\vdots
30	-2.8831617	$7.516634 \mathrm{e}-05$	0.7277559	0.7277569
31	-2.8831822	$5.470270 \mathrm{e}-05$	0.7277553	0.7277560
32	-2.8831971	$3.981016 \mathrm{e}-05$	0.7277548	0.7277554
33	-2.8832079	$2.897202 \mathrm{e}-05$	0.7277545	0.7277549
34	-2.8832158	$2.108451 \mathrm{e}-05$	0.7277543	0.7277546

from (2) that

$$
x_{N}-x_{N-1} \approx\left[f^{\prime}\left(x_{N-1}\right)-1\right]\left(x_{N-1}-x_{*}\right) \approx\left[f^{\prime}\left(x_{N-1}\right)-1\right] \frac{\left(x_{N}-x_{*}\right)}{f^{\prime}\left(x_{*}\right)}
$$

Although not requested, include $f^{\prime}\left(x_{N}\right)$ in tables 2, 3 and 4 as support for theory (with the aim of accruing a bonus).

Tables can be included in-line, overleaf on a separate page, or clumped at the end of your project (but in the latter case you must include a page reference).
i.e. that

$$
x_{N}-x_{*} \approx \frac{\left(x_{N}-x_{N-1}\right) f^{\prime}\left(x_{*}\right)}{f^{\prime}\left(x_{N-1}\right)-1}
$$

+1 theory
mark for
explanation of the size of truncation error.
$+\frac{1}{2}$ theory mark for
explanation of first-order convergence using $\epsilon_{N} / \epsilon_{N-1}$.
$+\frac{1}{2}$ bonus mark for comment about $\left|f^{\prime}\left(x_{*}\right)\right|$.
+1 program-
ming mark for program and table.
$+\frac{1}{2}$ theory mark for explaining slow convergence.

If the termination condition is that $\left|x_{N}-x_{N-1}\right|<\epsilon$, then the above implies that $\epsilon_{N} \equiv x_{N}-x_{*}$ may be larger than ϵ by a factor of approximately

$$
\left|\frac{f^{\prime}\left(x_{*}\right)}{f^{\prime}\left(x_{*}\right)-1}\right|
$$

For $k=16$

$$
\left|\frac{f^{\prime}\left(x_{*}\right)}{f^{\prime}\left(x_{*}\right)-1}\right| \approx 2.673
$$

First-order convergence. The result (3) implies that if $\left|f^{\prime}\left(x_{*}\right)\right|<1$ and $f^{\prime}\left(x_{*}\right) \neq 0$ then fixed-point iteration should yield first-order convergence. Further
(i) the smaller $\left|f^{\prime}\left(x_{*}\right)\right|$, the quicker should be the convergence;
(ii) if $\left|f^{\prime}\left(x_{*}\right)\right|<\frac{1}{2}$ fixed-point iteration has a faster rate of convergence than the bisection method.

The final two columns of the tables 2,3 and 4 are consistent with these predictions.

Double Roots: Question 4

The fixed-point iteration program was modified to solve $x^{3}-8.5 x^{2}+20 x-8=0$ by taking $f(x)=\frac{1}{20}\left(-x^{3}+8.5 x^{2}+8\right)$ (see the program on page 14). The iterates starting with $x_{0}=4.5$ are given in table 5 .

Include $7 N \epsilon_{N} / 40$, which should tend to 1 , in table for a possible bonus.

Convergence. At a double root $F^{\prime}\left(x_{*}\right)=0$. Since

$$
f^{\prime}\left(x_{*}\right)=1-h^{\prime}(F) F^{\prime}\left(x_{*}\right)
$$

it follows that if h is differentiable, then at a double root $f^{\prime}\left(x_{*}\right)=1$. From (3) this means that the iteration is on the boundary between convergence and divergence; indeed convergence in table 5 is clearly slower than before.
To understand this we take the Taylor expansion (2) to higher-order:

$$
\begin{equation*}
x_{N}=x_{N-1}+\frac{1}{2} f^{\prime \prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

(C) University of Cambridge

It follows that

$$
\epsilon_{N}=\epsilon_{N-1}+\frac{1}{2} f^{\prime \prime}\left(x_{*}\right) \epsilon_{N-1}^{2}+\ldots
$$

By seeking a solution of the form $\epsilon_{N} \sim \kappa / N$, we conclude that as $N \rightarrow \infty$,

$$
\epsilon_{N} \sim-\frac{2}{f^{\prime \prime}\left(x_{*}\right) N}=\frac{40}{7 N}
$$

Hence convergence is slower than first-order since as $N \rightarrow \infty$

$$
\frac{\epsilon_{N}}{\epsilon_{N-1}} \rightarrow 1
$$

Identify expression that leads to $40 / 7$, and evaluate asymptote of ϵ_{N} for a possible bonus.

These two results are consistent with the final two columns of table 5 .
Magnitude of error. It follows from (5) that
+1 theory
mark for
identifying truncation error.

Pending bonus for including $7 N \epsilon_{N} / 40$ in
table, in expanding hint and for evaluating asymptote of ϵ_{N}.
+1 programming mark for graph.
+1 program-
ming mark
for program and table.

$$
\epsilon_{N-1} \approx \pm \sqrt{\frac{2\left(x_{N}-x_{N-1}\right)}{f^{\prime \prime}\left(x_{*}\right)}}
$$

Thus, if the iteration is terminated once $\left|x_{N}-x_{N-1}\right|<\epsilon$, the truncation error in the root is given approximately by

$$
\left|\epsilon_{N}\right| \approx\left|\sqrt{\frac{2 \epsilon}{f^{\prime \prime}\left(x_{*}\right)}}\right|=\left|\sqrt{\frac{40 \epsilon}{7}}\right| \approx 0.00756 \quad \text { if } \epsilon=10^{-5}
$$

This is consistent with column two of table 5 , and we conclude that the termination criterion does not ensure a truncation error in the root of less than $\epsilon=10^{-5}$.

Newton-Raphson Iteration: Programming Task

Programs using Newton-Raphson iteration to calculate the root of $2 x+5-3 \sin x=0$ and the double root of $x^{3}-8.5 x^{2}+20 x-8=0$ can be found on pages 15 and 16 .

Question 5

Solution for the single root of $F(x)=2 x-3 \sin x+5=0$. In the case of this equation, the first few Newton-Raphson iterations starting with $x_{0}=-4.8$ are illustrated in figure 4 ; the program for this figure is listed on page 17. While the process does converge, if $\epsilon=10^{-5}$ it does so only after 66 iterations.
If instead $x_{0}=-4$, then as illustrated in the table 6 , the process converges in 4 iterations so that $\left|x_{N}-x_{N-1}\right|<\epsilon=10^{-5}$, and in 5 iterations so that $\left|x_{N}-x_{N-1}\right|<\epsilon=10^{-10}$. Note that in this and earlier calculations we have used the value of x_{5} as the de facto 'exact' solution to within rounding error.

Convergence. For x_{N-1} close to x_{*},

$$
\begin{align*}
x_{N} & =x_{N-1}-\frac{F\left(x_{N-1}\right)}{F^{\prime}\left(x_{N-1}\right)} \\
& =x_{N-1}-\frac{F^{\prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)+\frac{1}{2} F^{\prime \prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)^{2}+\ldots}{F^{\prime}\left(x_{*}\right)+F^{\prime \prime}\left(x_{*}\right)\left(x_{N-1}-x_{*}\right)+\ldots} \tag{6}\\
& =x_{*}+\left(x_{N-1}-x_{*}\right)-\left(x_{N-1}-x_{*}\right)\left[1-\frac{F^{\prime \prime}\left(x_{*}\right)}{2 F^{\prime}\left(x_{*}\right)}\left(x_{N-1}-x_{*}\right)+\ldots\right] \\
& =x_{*}+\frac{F^{\prime \prime}\left(x_{*}\right)}{2 F^{\prime}\left(x_{*}\right)}\left(x_{N-1}-x_{*}\right)^{2}+\ldots
\end{align*}
$$

Figure 4: First few Newton-Raphson iterations for $F(x)=2 x-3 \sin x+5=0$ starting with $x_{0}=-4.8$.

Table 6: Newton-Raphson iteration to single root with $x_{0}=-4$.
+1 theory
mark for
explaining convergence.

Pending bonus for evaluating K,
estimating size of error, and for comparison.

It follows that if the iterates converge,

$$
\epsilon_{N} \sim K\left(\epsilon_{N-1}\right)^{2} \quad \text { as } N \rightarrow \infty, \quad \text { where } K=\frac{F^{\prime \prime}\left(x_{*}\right)}{2 F^{\prime}\left(x_{*}\right)} \approx-0.0782
$$

The method is thus second-order since

$$
\frac{\log \left|\epsilon_{N}\right|}{\log \left|\epsilon_{N-1}\right|} \rightarrow 2 \quad \text { as } N \rightarrow \infty
$$

These two results are, on the whole, consistent with the first four entries in the final two columns of table 6 . However, the fifth entry in the penultimate column shows a variation because of rounding error.
We observe that convergence for Newton-Raphson iteration is, in this case, much faster than fixed-point iteration or the bisection method.

Magnitude of error and rounding error. From (6),

Evaluate K and include $\frac{F^{\prime}\left(x_{N}\right)}{2 F^{\prime}\left(x_{n}\right)}$ in table 6 for a possible bonus.

Compare

 with fixed-point iteration and the bisection method for a possible bonus.$$
\epsilon_{N-1} \sim-\left(x_{N}-x_{N-1}\right) .
$$

It follows that once the iteration has converged, and assuming no rounding error,

$$
\left|\epsilon_{N}\right| \sim\left|K\left(\epsilon_{N-1}\right)^{2}\right| \sim\left|K\left(x_{N}-x_{N-1}\right)^{2}\right| \leqslant|K| \epsilon^{2} .
$$

Table 7: Newton-Raphson iteration to double root with $x_{0}=5$ and $\epsilon=10^{-5}$.

N	x_{N}	ϵ_{N}	$\epsilon_{N} / \epsilon_{N-1}$	$\log \left\|\epsilon_{N}\right\| / \log \left\|\epsilon_{N-1}\right\|$
0	5.000000000	$1.000000 \mathrm{e}+00$		
1	4.550000000	$5.500000 \mathrm{e}-01$	0.5500000	
2	4.292485549	$2.924855 \mathrm{e}-01$	0.5317919	2.0563130
3	4.151672687	$1.516727 \mathrm{e}-01$	0.5185647	1.5341813
4	4.077379237	$7.737924 \mathrm{e}-02$	0.5101725	1.3568375
5	4.039103573	$3.910357 \mathrm{e}-02$	0.5053497	1.2667037
6	4.019659207	$1.965921 \mathrm{e}-02$	0.5027471	1.2121423
7	4.009856979	$9.856979 \mathrm{e}-03$	0.5013925	1.1757010
8	4.004935400	$4.935400 \mathrm{e}-03$	0.5007011	1.1497423
9	4.002469436	$2.469436 \mathrm{e}-03$	0.5003518	1.1303713
10	4.001235153	$1.235153 \mathrm{e}-03$	0.5001762	1.1153934
11	4.000617686	$6.176855 \mathrm{e}-04$	0.5000882	1.1034816
12	4.000308870	$3.088700 \mathrm{e}-04$	0.5000441	1.0937893
13	4.000154442	$1.544418 \mathrm{e}-04$	0.5000221	1.0857526
14	4.000077223	$7.722263 \mathrm{e}-05$	0.5000111	1.0789824
15	4.000038612	$3.861176 \mathrm{e}-05$	0.5000057	1.0732019
16	4.000019306	$1.930602 \mathrm{e}-05$	0.5000038	1.0682093
17	4.000009653	$9.652994 \mathrm{e}-06$	0.4999991	1.0638547

If $\epsilon=10^{-5}$ then $\left|\epsilon_{N}\right|$ is bounded by $|K| \epsilon^{2} \approx 7.8 \times 10^{-12}$, which is consistent with the results in column 2 of table 6 . If $\epsilon=10^{-10}$ then, after the fifth iteration, rounding error dominates the above estimate since MATLAB's double precision has an accuracy of about 10^{-16} (again see table 6).
$+\frac{1}{2}$ programming mark for program and table.
+1 theory mark for
explaining convergence.

Pending
bonus for
bisection comparison.
$+\frac{1}{2}$ theory mark for general explanation.

$$
+\frac{1}{2} \text { bonus }
$$

mark for pending bonuses and roundingerror
calculation.

Solution for the double root of $F(x)=x^{3}-8.5 x^{2}+20 x-8=0$. In the case of this equation, the first few Newton-Raphson iterations starting with $x_{0}=5$ are given in table 7 .

Convergence. For $x_{*}=4, F^{\prime}\left(x_{*}\right)=0$ and $F^{\prime \prime}\left(x_{*}\right) \neq 0$, implying from result (6) above that

$$
\epsilon_{N} \sim \frac{1}{2} \epsilon_{N-1}
$$

Hence the last two columns of table 7 should tend to $\frac{1}{2}$ and 1 (as is indeed the case). We note that in this case Newton-Raphson iteration has the same rate of convergence as the bisection method, and that from (6)

$$
x_{N}-x_{N-1} \sim-\frac{1}{2} \epsilon_{N-1}
$$

Rounding error. If ϵ is reduced from 10^{-5} to 10^{-10}, the iteration continues as in table 8 . The larger-than-predicted error in the final iterate arises because division by the small $F^{\prime}\left(x_{N-1}\right)$ amplifies the rounding error in $F\left(x_{N-1}\right)$. More precisely, suppose that the rounding error in evaluating a function is δ. Then it follows from the definition of $F(x)$ that close to the double root $x_{*}=4$ (where $F\left(x_{*}\right)=F^{\prime}\left(x_{*}\right)=0$ and $F^{\prime \prime}\left(x_{*}\right)=7$), that in a computation

$$
F\left(x_{N-1}\right)=F\left(x_{*}+\epsilon_{N-1}\right) \sim \frac{7}{2} \epsilon_{N-1}^{2}+\delta \quad \text { and } \quad F^{\prime}\left(x_{N-1}\right) \sim 7 \epsilon_{N-1}+\delta
$$

Hence, while in exact arithmetic

$$
\epsilon_{N}=\epsilon_{N-1}-\frac{F\left(x_{N-1}\right)}{F^{\prime}\left(x_{N-1}\right)}
$$

Compare with the bisection method for a possible bonus.

Include calculation of rounding error for a possible bonus.

Table 8: Newton-Raphson iteration to double root with $x_{0}=5$ and $\epsilon=10^{-10}$.

N	x_{N}	ϵ_{N}	$\epsilon_{N} / \epsilon_{N-1}$	$\log \left\|\epsilon_{N}\right\| / \log \left\|\epsilon_{N-1}\right\|$
18	4.000004826	$4.826398 \mathrm{e}-06$	0.4999897	1.0600237
19	4.000002413	$2.413255 \mathrm{e}-06$	0.5000116	1.0566212
20	4.000001206	$1.206080 \mathrm{e}-06$	0.4997730	1.0536240
21	4.000000602	$6.017966 \mathrm{e}-07$	0.4989692	1.0510129
22	4.000000302	$3.015609 \mathrm{e}-07$	0.5011010	1.0482393
23	4.000000147	$1.467238 \mathrm{e}-07$	0.4865479	1.0479823
24	4.000000064	$6.370571 \mathrm{e}-08$	0.4341880	1.0530215
25	4.000000032	$3.183852 \mathrm{e}-08$	0.4997750	1.0418612
26	3.999999968	$-3.192455 \mathrm{e}-08$	-1.0027018	0.9998437
27	3.999999968	$-3.192455 \mathrm{e}-08$	1.0000000	1.0000000

on a computer (and on the assumption that $|\delta| \ll\left|\epsilon_{N-1}\right|$)

$$
\begin{aligned}
\epsilon_{N} & \sim \epsilon_{N-1}-\frac{\frac{7}{2} \epsilon_{N-1}^{2}+\delta}{7 \epsilon_{N-1}+\delta} \\
& \sim \frac{1}{2} \epsilon_{N-1}-\frac{\delta}{7 \epsilon_{N-1}}+\ldots
\end{aligned}
$$

+1 bonus mark for quality of write-up.

Rounding error will be comparable with the update when $\epsilon_{N-1}=O\left(\delta^{\frac{1}{2}}\right)$. Table 8 is consistent with this result since, as noted above, MATLAB's double precision has an accuracy of about 10^{-16}.

Program 0-1/question1.m to produce figure 1

```
% Plot 2*x+5 and 3*sin(x)
%
fplot(@(x)[2*x+5],[-4 -1 -4 4],'r');
hold on;
fplot(@(x)[3*sin(x)],[-4 -1 -4 4],'b-.');
xlabel('x'); legend('2*x+5','3*sin(x)');
hold off;
%
% Output plot first in colour postscript and then as a pdf
% to leave options open for inclusion in write-up.
%
print -depsc 'question1';
print -dpdf 'question1';
```


Program 0-1/question2.m for question 2

```
% Bisection method to solve 2.0*x-3.0*sin(x)+5.0=0
%
% Define an anonymous function
% Set the tolerance for convergence
%
f=@(x)2.0*x-3.0*sin(x)+5.0;
tol=0.5e-5;
%
% Read in lower guess and higher guess
% Check that interval includes a zero and is increasing
%
yl=1.0; yu=1.0;
while yl*yu > 0
    xl=input('Please enter the lower end of initial interval [-3]: ');
    if isempty(xl)
            xl=-3.0;
    end
    xu=input('Please enter the upper end of initial interval [-2]: ');
    if isempty(xu)
        xu=-2.0;
    end
    yl=f(xl);
    yu=f(xu);
    if yl*yu >= 0
            disp('Chosen interval does not include a zero')
    elseif yl >= yu
        yl=1.0; yu=1.0;
        disp('Lower guess greater than the upper guess')
    end
end
%
% Start iteration & while xu-xl>2*tol keep interval halving
%
fprintf('\nStarting iteration\n\n')
n=0;
while( (xu-xl) > 2.0*tol )
    n=n+1;
        xm=0.5*(xl+xu);
        fprintf('%2d %11.7f %13.6e %13.6e %13.6e\n',n,xm,(xu-xl)/2,yl,yu)
        ym=f(xm);
        if yl*ym < 0
        xu=xm;
        yu=ym;
        else
            xl=xm;
            yl=ym;
        end
end
%
% xu-xl<2*tol; calculate xm (xu-xm<tol and xm-xl<tol); output results
%
n=n+1;
xm=0.5* (xl+xu);
fprintf('%2d %11.7f %13.6e %13.6e %13.6e\n',n,xm,(xu-xl)/2,yl,yu)
fprintf('\nRoot is within %10.3e of %11.7f\n',tol,xm)
```


Program 0-1/picard1.m for question 3

```
% Fixed-point interation method to solve 2*x-3*sin(x)+5=0
%
% Define an anonymous function
% Hard wire the solution to 15 decimal places (obtained by NR iteration)
% Set the tolerance for convergence
% Set the maximum number of iterations
%
f=@(x,k) (3*sin}(x)+k*x-5)/(2+k)
fd=@ (x,k) (3*\operatorname{cos}(x)+k)/(2+k);
xexact = -2.8832368725582835;
tol = 1e-5;
nmax = 50;
%
% Input k and x
%
k=input('Please enter k [3.5]: ');
if isempty(k)
    k=3.5;
end
x=input('Please enter initial guess [-2]: ');
if isempty(x)
    x=-2;
end
%
% Initialise the iteration
% Output initial guess and error
%
n = 0;
err = 1;
epnew=x-xexact;
fprintf('%2d %10.7f %13.6e\n',n,x,epnew)
%
% Start the iteration
% Terminate when difference between successive guesses < tol
%
while(err>=tol & n<nmax)
    n = n+1;
    y = f(x,k);
    epold=epnew;
    epnew=y-xexact;
    fprintf('%2d %10.7f %13.6e %10.7f %10.7f\n',n,y,epnew,epnew/epold,fd(y,k));
    err = abs(y-x);
    x = y;
end
```


Program 0-1/question3_1plot.m to produce figure 2

```
% Matlab plot for Figure 2, illustrating first few iterations:
k=0;
f=@(x) (3*sin}(x)+k*x-5)/(2+k)
fplot(@(x)[x],[-4.5 -1 -4.5 -1],'r');
hold on;
fplot(f,[-4.5 -1 -4.5 -1],'b--');
legend('x','(3*sin}(x)-2)/2')
% Find first few iterations explicitly: (Alternatively could simply take the
% first few values output directly by picard1.m)
niter=10;
x0=-2.0; xnew=x0;
for i=1:niter
    x(i)=xnew;
    x(i+1)=f(x(i));
    xnew=x(i+1);
end
% 'Join the dots', to illustrate behaviour of iterates
xiter = [x(1) x(2) x(2) x(3) x(3) x(4) x(4) x(5) x(5)] ;
fiter = [x(2) x(2) x(3) x(3) x(4) x(4) x(5) x(5) x(6)];
plot(xiter,fiter,'black')
% Label graph and distinguish curves:
xlabel('x');
ylabel('f(x)')
% If we want to put arrows to indicate direction of iteration
% one way is the following:
dd1=diff(xiter);
dd2=diff(fiter);
xx1=xiter(1:end-1);
ff1=fiter(1:end-1);
quiver(xx1,ff1,dd1,dd2,'black');
hold off;
%
% Output plot first in colour postscript and then as a pdf
% to leave options open for inclusion in write-up.
%
print -depsc 'question3-1';
print -dpdf 'question3-1';
```


Program 0-1/picard2.m for question 4

```
% Fixed-point interation method to solve x^3 - 8.5x^2 + 20x - 8 = 0
%
% Define an anonymous function
% Hard wire the solution
% Set the tolerance for convergence
% Set the maximum number of iterations
%
f=@(x)(-x^3+8.5*x^2+8)/20;
xexact = 4;
tol = 1e-5;
nmax = 1000;
%
% Input x
%
x=input('Please enter initial guess [4.5]: ');
if isempty(x)
    x=4.5;
end
%
% Initialise the iteration
% Output initial guess and error
%
n = 0;
err = 2*tol;
epnew=x-xexact;
fprintf('%3d %10.7f %13.6e\n',n,x,epnew)
%
% Start the iteration
% Terminate when difference between successive guesses < tol
%
while(err>=tol & n<nmax)
    n = n+1;
    y = f(x);
    epold=epnew;
    epnew=y-xexact;
    if n <= 5 || n >= 730
        fprintf(%%3d %10.7f %13.6e %10.7f',n,y,epnew,epnew/epold);
        fprintf(' %10.7f\n',7*n*epnew/40);
    end
    err = abs(y-x);
    x = y;
end
```


Program 0-1/newton1.m for the first part of question 5

```
% Newton-Raphson interation method to solve F(x)=2*x-3*sin(x)+5=0
%
% Define an anonymous function
% Hard wire the solution to 15 decimal places (obtained by NR iteration)
% Set the maximum number of iterations
%
f=@(x)2*x-3*sin(x)+5;
fd=@(x) 2-3*cos(x);
fdd=@(x) 3*sin(x);
xexact=-2.883236872558284;
nmax = 100;
%
% Input initial guess and tolerance for convergence
%
x=input('Please enter initial guess [-4]: ');
if isempty(x)
    x=-4;
end
tol=input('Please enter initial tolerance [1e-5]: ');
if isempty(tol)
    tol = 1e-5;
elseif tol < 0
    tol = -tol;
end
%
% Initialise the iteration
% Output initial guess and error
%
n = 0;
err = 2*tol;
epnew=x-xexact;
fprintf(%%2d %20.15f %13.6e\n',n,x,epnew)
%
% Start the iteration
% Terminate when difference between successive guesses < tol
%
while(err>=tol & n<nmax)
        n = n+1;
        y = x - f(x)/fd(x);
        epold=epnew;
        epnew=y-xexact;
        if abs(epnew/(epold*epold)) < 1
            fprintf()%2d %20.15f %13.6e %11.7f',n,y,epnew,epnew/(epold*epold));
        else
            fprintf('%2d %20.15f %13.6e %11.4g',n,y,epnew,epnew/(epold*epold));
        end
        fprintf(' %11.7f, ,log(abs(epnew))/log(abs(epold)))
        fprintf(' %10.7f\n',fdd(y)/(2*fd(y)))
        err = abs(y-x);
        x = y;
end
```


Program 0-1/newton $2 . m$ for the second part of question 5

```
% Newton-Raphson interation method to solve F(x)=x^3-8.5*x^2+20*x-8=0
%
% Define an anonymous function
% Hard wire the exact solution and set the maximum number of iterations
%
f=@(x)x*x*x-8.5*x*x+20*x-8;
fd=@(x) 3*x*x-17*x+20;
xexact=4;
nmax = 50;
%
% Input initial guess and tolerance for convergence
%
x=input('Please enter initial guess [5]: ');
if isempty(x)
    x=5;
end
tol=input('Please enter initial tolerance [1e-5]: ');
if isempty(tol)
    tol = 1e-5;
elseif tol < 0
    tol = -tol;
end
%
% Initialise the iteration
% Output initial guess and error
%
n = 0;
err = 2*tol;
epnew=x-xexact;
fprintf('%2d %12.9f %13.6e\n',n,x,epnew)
%
% Start the iteration
% Terminate when difference between successive guesses < tol
%
while(err>=tol & n<nmax)
    n = n+1;
    y = x - f(x)/fd(x);
    epold=epnew;
    epnew=y-xexact;
    fprintf('%2d %12.9f %13.6e %10.7f',n,y,epnew,epnew/epold);
    if n > 1
        fprintf(' %10.7f\n',log(abs(epnew))/log(abs(epold)));
    else
        fprintf('\n');
    end
    err = abs(y-x);
    x = y;
end
```


Program 0-1/question5_plot.m to produce figure 4

\% Matlab plot for Figure 4, illustrating first few Newton-Raphson iterations:

```
x0 = -4.8;
f = @(x)(2*x-3*\operatorname{sin}(x)+5);
f1 = @(x) (f(x0)-(x0-x)*(2-3*\operatorname{cos(x0))); % tangent at x0}
fplot(f,[-8 8 -15 20]);
xlabel('x');
ylabel('2x-3sin(x)+5')
%legend('2x-3sin(x)+5');
hold on;
fplot(f1,[-8 8 -15 20],'--');
fplot(@(x)[0*x],[-8 8 -15 20],'black');
% Show the first few iterations:
x1=-0.42; % next iterate
f2= @(x)(f(x1)-(x1-x)*(2-3*cos(x1))); % tangent at x1
fplot(f2,[-8 8 -15 20],'--');
x2=6.9; % next iterate
plot([x0 x0],[0 f(x0)],'black');
plot([x1 x1],[0 f(x1)],'black');
% Put text labels on graph:
str0=('x_0');
str1=('x_1');
str2=('x_2');
text(x0,0.5,str0);
text(x1,-1.5,str1);
text(x2,0.5,str2);
hold off;
%
% Output plot first in colour postscript and then as a pdf
% to leave options open for inclusion in write-up.
%
print -depsc 'question5';
print -dpdf 'question5';
```

