Tensors

T. J. Crawford, J. Goedecke, P. Haas, E. Lauga, J. Munro, J. M. F. Tsang

July 14, 2016

1 Relevant courses

The relevant Cambridge undergraduate course is IA Vector Calculus.

2 Books

3 Notes

3.1 Definition and examples

Consider orthogonal right-handed bases \{e_i\} and \{e'_i\} in \mathbb{R}^3 with corresponding Cartesian coordinates \{x_i\} and \{x'_i\}. Then a vector \(x \in \mathbb{R}^3\) can be written as

\[x = x_i e_i = x'_i e'_i \]

(using summation convention throughout these notes).

These two bases are related by a rotation:

\[e'_i = R_{ip} e_p \quad \text{and} \quad x'_i = R_{ip} x_p \]

where \(R\) is a rotation matrix, so

• \(R\) is orthogonal: \(R_{ip} R_{jp} = R_{qp} R_{ij} = \delta_{ij}\), and
• \(\det R = 1\).

Tensors are geometrical objects which obey a generalised form of this transformation rule. By definition, a tensor \(T\) of rank \(n\) has components \(T_{i_1 \ldots i_n}\) (with \(n\) indices) with respect to each basis \(\{e_i\}\) or coordinate system \(\{x_i\}\), obeying the tensor transformation rule

\[T'_{i_1 \ldots k} = R_{ip} R_{jq} \ldots R_{kr} T_{pq \ldots r}. \]

under a change of basis.

Examples Here are some examples of the tensor transformation rule for different ranks:

• Rank 0: \(T' = T\). Rank 0 tensors are scalars.
• Rank 1: \(T'_{i} = R_{ip} T_{p}\). As we have seen, these are vectors.
• Rank 2: \(T'_{ij} = R_{ip} R_{jq} T_{pq}\). These are matrices which represent linear maps or quadratic forms.
Special cases The tensors δ_{ij} and ϵ_{ijk} are tensors of rank 2 and 3 respectively, with the special property that their components are unchanged under any change of basis:

$$R_{ip}R_{jq}\delta_{pq} = R_{iq}R_{jp} = \delta_{ij}$$

and

$$R_{ip}R_{jq}R_{kr}\epsilon_{pqr} = (\det R)\epsilon_{ijk} = \epsilon_{ijk}.$$

Symmetric and antisymmetric tensors A tensor of rank n obeying $T_{ijp...q} = \pm T_{jip...q}$ is said to be symmetric/antisymmetric in the indices i and j. A tensor is said to be totally symmetric/antisymmetric if it is symmetric/antisymmetric under any such swap of indices.

So, δ_{ij} is totally symmetric and ϵ_{ijk} is totally antisymmetric.

In \mathbb{R}^3, any totally antisymmetric tensor of rank 3 takes the form $T_{ijk} = \lambda\epsilon_{ijk}$ for some λ. There is no totally antisymmetric tensor of rank $n > 3$ (unless all components are zeros).

4 Exercises

4.1 Basic properties

Show each of the following:

- If T and S are both tensors of rank n, then $(T + S)_{ij...k} = T_{ij...k} + S_{ij...k}$. (Hint: Use the transformation rule.)
- If α is a scalar, then $(\alpha T)_{ij...k} = \alpha T_{ij...k}$.
- Hence, any linear combination of rank n tensors is itself a rank n tensor.
- If T and S are tensors of rank n and m respectively, then the tensor product

$$\left(T \otimes S\right)_{ij...kpq...r} = T_{ij...k}S_{pq...r}$$

is a tensor of rank $n + m$.
- If u_1, v, \ldots, w are n vectors, then $T_{ij...k} = u_i v_j \ldots w_k$ defines a tensor of rank n.
- If $T_{ijp...q}$ is a tensor of rank n, then $S_{p...q} = \delta_{ij}T_{ijp...q}$ is a tensor of rank $n - 2$. (Note that contracting on a different pair of indices in general results in a different tensor.)
- The trace of a matrix, T_{ii}, is a rank 0 tensor.

4.2 Further exercises

Let $u_i(x)$ be a vector field and let $\sigma_{ij}(x)$ be a second-rank tensor field. Show that:

- $\partial u_i / \partial x_j$ transforms as a rank 2 tensor.
- $\nabla \cdot u = \partial u_i / \partial x_i$ is a scalar.
- $\partial \sigma_{ij} / \partial x_j$ transforms as a vector.

Let T be a tensor of rank 3, satisfying

$$T_{ijk} = T_{jik} \text{ and } T_{ijk} = -T_{ikj}.$$

Show that $T_{ijk} = 0$.

Let T be a tensor of rank 4, satisfying

$$T_{ijkl} = -T_{jikl} = -T_{ijlk} \text{ and } T_{ijij} = 0.$$

Show that

$$T_{ijkl} = \epsilon_{ijp}\epsilon_{klq}S_{pq} - T_{rqrp}.$$