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1 Let Ω = T3 := (R/LZ)3 be a fundamental periodic domain in R3, and let

H =

{
v ∈ (L̇2

per(Ω))
3

∣∣∣∣ ∇ · v = 0

}
,

and

V =

{
v ∈ (Ḣ1

per(Ω))
3

∣∣∣∣ ∇ · v = 0

}
,

with |·| and ∥·∥ denoting the norms of the spaces H and V respectively. We denote by
B(u, v) the bilinear operator B : V × V → V ′ defined by

⟨B(u, v), w⟩V ′×V =

∫
Ω
(u(x) · ∇v(x)) · w(x)dx, for every u, v, w ∈ V.

Recall that D(A) = (Ḣ2
per(Ω))

3 ∩ V is the domain of the Stokes operator A, where
A = −∆ in this setting.

Suppose that {φ1, φ2, · · · } is an orthonormal basis of the Hilbert space H consisting
of eigenfunctions of the Stokes operator A, that is Aφk = λkφk for k = 1, 2, · · · , with
0 < λ1 ⩽ λ2 ⩽ · · · , repeated according to their multiplicities. Furthermore, denote by

Hn = span{φ1, φ2, · · · , φn},

and by Pn the orthogonal projection Pn : H → Hn, for n = 1, 2, · · · .

Let N be a fixed positive integer. Consider the following system in R3, subject to
periodic boundary condition with fundamental domain Ω,

∂
∂tu− ν∆u+ (PNu) · ∇u+∇p = 0,

∇ · u = 0,

u(0, x) = u0(x).

Or equivalently we consider the evolution equation

du

dt
+ νAu+B(PNu, u) = 0, (∗)

with initial value u(0) = u0.

(a) (i) Show that

∥PNw∥ ⩽ λ
1/2
N |PNw| for everyw ∈ V,

(ii) and that there exists a positive scale invariant constant c, such that:

∥PNw∥L3(Ω) ⩽ cλ
1/4
N |w| for everyw ∈ V,

(iii) moreover, that

|⟨B(PNu, v), w⟩V ′×V | ⩽ cλ
1/4
N |u| ∥v∥ ∥w∥ , for everyu, v, w ∈ V.
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(b) Let u0 ∈ H and let m > N be an arbitrary integer. Consider the following Galerkin
approximation scheme in Hm for equation (∗):

d

dt
um + νAum + PmB(PNum, um) = 0, (∗∗)

with initial value um(0) = Pmu0.

(i) Explain briefly why for every T > 0 the initial-value ODE system (∗∗) has a
unique solution in the time interval [0, T ].

(ii) Demonstrate that for every T > 0, there are positive constants K0(T ),K1(T )
and K ′

0(T ), independent of m, such that the solution um of the Galerkin system
(∗∗) satisfies:

∥um∥L∞((0,T );H) ⩽ K0(T ) ,

∥um∥L2((0,T );V ) ⩽ K1(T ) ,

and ∥∥∥∥dumdt
∥∥∥∥
L2((0,T );V ′)

⩽ K ′
0(T ) .

(c) Let us denote by Hweak the Hilbert space H endowed with its weak topology. Use
the above to prove that for every T > 0 and every choice of initial data u0 ∈ H there
exists a global weak solution, u, to system (∗) satisfying:

(i)

u ∈ C([0, T ];Hweak)
⋂
L∞((0, T );H)

⋂
L2((0, T );V ), and

du

dt
∈ L2((0, T );V ′);

and that (∗) holds in L2((0, T );V ′).

(ii) Moreover, show that the weak solution, u, of system (∗), which was established
above, satisfies the energy equality:

1

2
|u(t)|2 + ν

∫ t

0
∥u(τ)∥2 dτ =

1

2
|u0|2 ,

for every t ∈ [0, T ];

(iii) and that
u ∈ C([0, T ];H).

(iv) Demonstrate that the weak solution is unique.
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2 Let Ω = T3 := (R/LZ)3 be a fundamental periodic domain in R3, and let

H̃ = (L̇2
per(Ω))

3, and Ṽ = (Ḣ1
per(Ω))

3,

with | · | and ∥ · ∥ denote the norms of the spaces H̃ and Ṽ , respectively. Moreover, we
denote by Ṽ ′ the dual space of Ṽ .

We set the bilinear operator B̃(u, v) to be the map B̃ : Ṽ × Ṽ → Ṽ ′ defined by the
following formula:

⟨B̃(u, v), w⟩Ṽ ′×Ṽ =

∫
Ω
[(u(x) · ∇v(x)) · w(x) + 1

2
(∇ · u(x))v(x) · w(x)] dx, (‡)

for every u, v, w ∈ Ṽ .

Moreover, let the operator Ã = −∆ with domain D(Ã) = (Ḣ2
per(Ω))

3, and assume

that Ã can be extended uniquely to a linear operator Ã : Ṽ → Ṽ ′. We set {ψ1, ψ2, · · · }
to be an orthonormal basis of H̃ consisting of eigenfunctions of the operator Ã, that is
Ãψk = µkψk for k = 1, 2, · · · , with 0 < µ1 ⩽ µ2 ⩽ · · · , repeated according to their
multiplicities. Furthermore, set

H̃n = span{ψ1, ψ2, · · · , ψn},

and denote by P̃n the orthogonal projection P̃n : H̃ → H̃n, for n = 1, 2, · · · .

Suppose f ∈ H̃ and consider the following nonlinear steady state equation in R3,
subject to periodic boundary condition with fundamental domain Ω,

−ν∆u+ (u · ∇)u+
1

2
(∇ · u)u = f. (†)

(a) (i) Show that the bilinear operator B̃(u, v) given in equation (‡) is well defined,
and that there exists a dimensionless constant c > 0 such that∣∣∣⟨B̃(u, v), w⟩Ṽ ′×Ṽ

∣∣∣ ⩽ c(|u|1/2 ∥u∥1/2 ∥v∥+ |v|1/2 ∥v∥1/2 ∥u∥) ∥w∥ ⩽ cµ
−1/4
1 ∥u∥ ∥v∥ ∥w∥ ,

u, v, w ∈ Ṽ .

(ii) Show that

⟨B̃(u, v), w⟩Ṽ ′×Ṽ = −⟨B̃(u,w), v⟩Ṽ ′×Ṽ , for every u, v, w ∈ Ṽ .

(b) Consider the following Galerkin approximation scheme in H̃m for equation (†), for
m = 1, 2, · · · :

νÃum + P̃mB̃(um, um) = P̃mf. (††)

(i) Show that there exists R > 0, which depends on |f |, ν and µ1, but is
independent of m, such that all the solutions of (††) satisfy

∥um∥ ⩽ R.

Part III, Paper 359



5

(ii) Prove that for every m = 1, 2, · · · the nonlinear system (††) has a solution in
H̃m.

[Hint: You may want to consider the map Φm : H̃m → H̃m defined by

Φm(v) = −v − (νÃ)−1P̃mB̃(v, v) + (νÃ)−1P̃mf,

and show, by quoting a lemma based on the Brouwer fixed point theorem, or
otherwise, that there is v∗ ∈ H̃m such that Φm(v∗)=0 ]

(c) (i) Use the above to show that there exists u ∈ Ṽ with ∥u∥ ⩽ R which satisfies the
following equation

νÃu+ B̃(u, u) = f, (‡∗)

in Ṽ ′.

(ii) Demonstrate the following regularity result: the solution, u, established above
for equation (‡∗) belongs to D(Ã) and that equation (‡∗) holds in H̃.

END OF PAPER
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