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(i) Let S ⊂ C be a domain (non-empty connected open set) and u : S → R. We say
that u is subharmonic if u is upper-semicontinuous and for any z ∈ S and r > 0
such that Br(z) ⊂ S,

u(z) ⩽
1

2π

∫ 2π

0
u(z + reiθ) dθ.

Here, as in lectures, Br(z) denotes the closed ball of radius r and centre z. If
u : S → R is subharmonic and attains a maximum in S, prove that it must be
constant.

Suppose that A is a closed and densely defined operator on a separable Hilbert space
H (with norm ∥ · ∥) and z0 /∈ Sp(A). Show that there is a domain containing z0 on
which the function

z 7→ ∥(A− zI)−1∥

is subharmonic. Deduce that if ϵ > 0 and S is a bounded component of{
z ∈ C :

∥∥(A− zI)−1
∥∥−1

< ϵ
}
,

then S ∩ Sp(A) ̸= ∅.

(ii) Now suppose that 0 /∈ Sp(A). Let B be a bounded operator on H with ∥B∥∥A−1∥ <
1. Prove that 0 /∈ Sp(A+B) and that

∥(A+B)−1∥ ⩽
∥A−1∥

1− ∥B∥∥A−1∥
.

Let X be a bounded connected component of Sp(A) separated from the rest of the
spectrum. Let Bn be a sequence of bounded operators with ∥Bn∥ → 0 as n → ∞.
Show that given any ϵ > 0, there exists a N ∈ N such that if n ⩾ N , then

inf
z∈Sp(A+Bn)

dist(z,X) < ϵ.

(iii) Recall that an operator A on H is said to be compact if the closure of {Ax : ∥x∥ ⩽ 1}
is compact in H. Show that any bounded, finite-rank operator is compact. Let A be
compact and {en : n ∈ N} be an orthonormal basis of H. Define An = P∗

nPnAP∗
nPn,

where Pn : H → span{e1, . . . , en} is the corresponding orthogonal projection. Prove
that ∥A−An∥ → 0 as n → ∞.

(iv) Let A be a (not necessarily self-adjoint) compact operator on a separable Hilbert
space H. Let {Pn} be a sequence of orthogonal projections onto finite-dimensional
subspaces such that Pn converges strongly to the identity as n → ∞. Prove that
Sp(PnAP∗

n) converges to Sp(A) in the Hausdorff metric as n → ∞.

(You may use the spectral theorem for compact operators, provided that it is clearly
stated.)
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2 Throughout this question, you may assume that for a closed and densely defined
operator T on H, T ∗T is self-adjoint and its domain forms a core of T . You may also use
the definition of Spess,k and Spd given in lectures, together with their characterisation for
normal operators.

(i) Let A be a closed and densely defined operator on a separable Hilbert space H.
Prove that

Spess,1(A) = {z ∈ C : 0 ∈ Spess((A− zI)∗(A− zI)) ∩ Spess((A− zI)(A− zI)∗)} ,
Spess,2(A) = {z ∈ C : 0 ∈ Spess((A− zI)∗(A− zI))}
Spess,3(A) = {z ∈ C : 0 ∈ Spess((A− zI)∗(A− zI)) ∪ Spess((A− zI)(A− zI)∗)} .

Show that if A is normal, then

Spd(A) = {z ∈ C : 0 ∈ Spd((A− zI)∗(A− zI))} .

Provide an example to show that this characterisation of the discrete spectrum need
not hold if A is non-normal.

(ii) Let ΩN denote the class of normal operators A on l2(N) for which the linear span of
the canonical basis {ej}∞j=1 forms a core of A and A∗. For A ∈ ΩN, the multiplicity
of A at z is

h(z,A) =


multiplicity of the eigenvalue z, if z ∈ Spd(A),

+∞, if z ∈ Spess(A),

0, otherwise.

Let Pn be the orthogonal projection onto span{e1, . . . , en}. List the singular values

of (A − zI)P∗
n as σ

(n)
n (z,A) ⩽ σ

(n)
n−1(z,A) ⩽ · · · ⩽ σ

(n)
1 (z,A). Prove that for any

j ∈ N ∪ {0}, σ
(n)
n−j(z,A) is decreasing in n and converges to a limit denoted by

σinf +j(A− zI). Moreover, show that

h(z,A) = lim
k→∞

k∑
j=0

max {0, 1− k × σinf +j(A− zI)} .

(You may assume standard properties of the Rayleigh–Ritz method.)

(iii) Let Λ be the evaluation of matrix entries with respect to the canonical basis, i.e.,
A 7→ ⟨Aej , ei⟩ for i, j ∈ N. Prove that there exists a ∆A

4 -tower {hn3,n2,n1} using Λ
such that for any {zn2,n1}n1,n2∈N ⊂ C with limn2→∞ limn1→∞ zn2,n1 = z,

lim
n3→∞

lim
n2→∞

lim
n1→∞

hn3,n2,n1(zn2,n1 , A) = h(z,A) ∀A ∈ ΩN.
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Let C(H) be the set of closed operators on a separable Hilbert space. For closed
subspaces M,N ⊂ H, we set

δ(M,N) = sup
u∈M,∥u∥=1

dist(u,N), δ̂(M,N) = max{δ(M,N), δ(N,M)}.

Here, δ({0}, N) = 0 and δ(M, {0}) = 1 if M ̸= {0}. Recall that the graph of an operator
A : D(A) → H (where D(A) is a subspace of H) is gr(A) = {(x,Ax) : x ∈ D(A)}. This is
a subspace of the direct sum H⊕H, and is closed precisely when A is a closed operator.
Hence, given closed operators S, T ∈ C(H), we can define their gap as

δ(S, T ) = δ(gr(S), gr(T )), δ̂(S, T ) = max{δ(S, T ), δ(T, S)}.

You may assume throughout that if S and T are densely defined, then δ̂(S∗, T ∗) = δ̂(S, T ).

The class of nonlinear operator pencils ΩNL is the set of maps T : C 7→ C(l2(N))
satisfying the following two properties:

� T is continuous when C(l2(N) is equipped with the topology induced by the gap δ̂;

� ∀z ∈ C, T (z) is densely defined and span{en : n ∈ N} is a core of T (z) and T (z)∗.

Let T ∈ ΩNL. The spectrum and pseudospectra of T are

Sp(T ) = {z ∈ C : 0 ∈ Sp(T (z))}, Spϵ(T ) = Cl
({

z ∈ C :
∥∥T (z)−1

∥∥−1
< ϵ

})
.

Let {Gn}n∈N be a sequence of sets that satisfy the following:

� Each set Gn is a finite subset of C;

� Any z ∈ Gn is complex rational, i.e., Re(z) ∈ Q and Im(z) ∈ Q;

� limn→∞ dist(z,Gn) = 0 for any z ∈ C.

For T ∈ ΩNL, define the following set of evaluation functions:

Λ = {T 7→ ⟨T (z)ej , ei⟩ : z ∈ Gn and i, j, n ∈ N}.

Prove that
{Spϵ,ΩNL,MAW,Λ} ∈ ΣA

2 , {Sp,ΩNL,MAW,Λ} ∈ ΠA
3 ,

where you may use the definitions of MAW, ΣA
j and ΠA

j given in lectures.
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