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In linearised theory, we consider spacetimes perturbatively close to Minkowski such
that the metric in Cartesian coordinates xα = (t, x, y, z) is given by

gαβ = ηαβ + hαβ , ηαβ = diag(−1, 1, 1, 1) .

Here the metric perturbation is small, hαβ = O(ϵ) with ϵ ≪ 1, and we ignore terms
quadratic or higher order in hαβ. In the following you may use without proof that the
Levi-Civita connection and Riemann tensor associated with a metric gαβ are

Γα
βγ =

1

2
gαρ (∂βgγρ + ∂γgρβ − ∂ρgβγ) ,

Rγ
ραβ = ∂αΓ

γ
ρβ − ∂βΓ

γ
ρα + Γµ

ρβΓ
γ
µα − Γµ

ραΓ
γ
µβ .

(a) Writing the inverse metric as gαβ = ηαβ + kαβ, compute kαβ in terms of hαβ.

(b) Compute the Levi-Civita connection Γα
βγ and the Riemann tensor Rµραβ to

linear order in hαβ. Show that the components Rµνρσ are invariant under coordinate
transformations x̃α = xα − ξα, where the vector field ξα is small, ξα = O(ϵ).

(c) Consider the metric gαβ = ηαβ + hαβ with

htt = htx = hty = htz = 0 ,

hxx =

[
x2 − z2

r2
− x2(z2 + 2y2)

r4

]
A+ 2

x2(z2 + 2y2)

r4
B +

[
y2 + 2z2

r2
− x2(z2 + 2y2)

r4

]
C,

hxy =
yx(x2 − y2)

r4
(A− 2B + C),

hxz =
xz

r4
[
(2x2 + z2)A+ (−x2 + 3y2 + z2)B − (x2 + 2z2 + 3y2)C

]
,

hyy =

[
z2 − y2

r2
+

y2(2x2 + z2)

r4

]
A− 2

y2(2x2 + z2)

r4
B +

[
−x2 + 2z2

r2
+

y2(2x2 + z2)

r4

]
C,

hyz =
yz

r4
[
−(z2 + 2y2)A− (3x2 − y2 + z2)B + (3x2 + 2z2 + y2)C

]
,

hzz =
y4 − x4

r4
A− 2

z2(x2 − y2)

r4
B +

(x2 − y2)(r2 + z2)

r4
C.

where r =
√

x2 + y2 + z2 and A, B, C = O(ϵ) are perturbatively small functions of t− r.

(i) You may assume without proof that for this metric ∂mhim = 0. Briefly
deduce that consequently ∂νhµν = 0. Show that the metric perturbation
also satisfies ηµνhµν = 0 and, hence, is in transverse-traceless gauge.

(ii) Consider an observer located in this spacetime at x = y = 0, z → ∞.
Compute the metric perturbation at the location of this observer and thus
determine the gravitational-wave polarizations h+ and h× seen by this
observer. Briefly interpret your results.
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In the 3+1 formalism, the energy density, momentum density and stress tensor are
defined in terms of the energy momentum tensor Tµν by

ρ ..= Tµνn
µnν , jα ..= −⊥µ

αTµνn
ν , Sαβ

..= ⊥µ
α⊥ν

βTµν .

Here, nµ is the timelike unit normal of the spacetime foliation and ⊥µ
α = δµα + nµnα is

the projector onto spatial hypersurfaces.

(a) Show that
Tαβ = ρnαnβ + jαnβ + nαjβ + Sαβ .

(b) Show that the contracted spatial covariant derivative of the stress tensor can be
written as

DµS
µ
α

..= ⊥ρ
µ⊥µ

σ⊥γ
α∇ρS

σ
γ = ⊥γ

α∇µS
µ
γ − aσS

σ
α ,

where the acceleration vector aσ is related to nα in a form you should write down explicitly.

(c) Show that the Lie derivative of the momentum density along the unit timelike
normal, Lnjα ..= nµ∇µjα + jµ∇αn

µ, satisfies

⊥α
βLnjα = Lnjβ .

(d) Starting from the conservation of energy and momentum, ∇µT
µ
α = 0, show

that the 3+1 evolution equation for the momentum density can be written as

Lnjα = c1DµS
µ
α + c2S

µ
αaµ + c3Kjα + c4ρaα , (†)

where K ..= Kµ
µ is the trace of the extrinsic curvature Kµν and c1, c2, c3, c4 are constants

you should determine. [Hint: You may use without proof that Kµα = −∇µnα − nµaα .]

(e) The timelike unit normal and the acceleration vector are related to the lapse
function and shift vector by

nµ =
1

α
(∂t − β)µ , aµ =

∂µα

α
.

Use these relations to substitute for the Lie derivative in Eq. (†) and write the 3+1
evolution equation for the momentum density in the form ∂tjµ = . . . where you should
determine and simplify as possible the right-hand side.
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In Schwarzschild coordinates, the metric for a black hole spacetime of mass M is

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdϕ2) , t ∈ R, r ⩾ 0 .

The maximal extension of this spacetime is obtained by transforming to Kruskal-Szekeres
coordinates t̂, r̂ related to r and t by

t̂
r̂ = tanh t

4M for r > 2M , r̂
t̂
= tanh t

4M for r < 2M ,

t̂2 − r̂2 = −e
r

2M (r − 2M) .

(a) Sketch qualitatively in the plane spanned by (t̂, r̂) the curves of constant t and
those of constant r, including in particular the curves r = 2M and r = 0.

(b) Consider an observer starting from rest, ˙̂r = 0, at r̂ = 0, t̂ = 0, freely falling into
the black hole. Let nµ denote the future pointing timelike unit normal of a foliation of a
numerical simulation using geodesic gauge, i.e. lapse α = 1 and shift βi = 0, starting with
initial data given by the hypersurface t̂ = 0 of the Kruskal-Szekeres spacetime. Using the
relation nρ∇ρnµ = ∂µα, show that the observer moves with four-velocity uµ = nµ. [Hint:
The Kruskal-Szekeres metric is diagonal.]

(c) The geodesic motion of the observer in Schwarzschild coordinates obeys

−E2 + ṙ2 = −1 +
2M

r
,

where a dot denotes differentiation with respect to the observer’s proper time τ and E is
a constant. Show that the observer reaches r = 0 at τ = Mπ. Briefly comment on the
implications of this result for the long-term stability of numerical simulations performed

in the geodesic gauge. [Hint: d
dx

[
−
√
x(1− x) + arcsin

√
x
]
=

√
x

1−x ]

(d) In the BSSN formulation of the Einstein equations, the time evolution of the
trace K of the extrinsic curvature is given in terms of the inverse spatial metric γmn,
the spatial covariant derivative Dm, the conformal traceless extrinsic curvature Ãmn, the
energy density ρ and the trace S of the stress tensor by

∂tK = βm∂mK − γmnDmDnα+ α
(
ÃmnÃ

mn + 1
3K

2
)
+ 4πα(ρ+ S) .

(i) Show that for geodesic gauge, the energy condition ρ + S ⩾ 0 implies
∂tK ⩾ 0.

(ii) Neglecting the term ÃmnÃ
mn, assuming vacuum and using geodesic gauge,

derive an ordinary differential equation for K. Solve this differential
equation for the initial condition K = K0 at t = t0, where K0 is a positive
constant, and compute the time t∞ when K becomes infinite.

END OF PAPER
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