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(a) Derive the unitary bound ∆ ⩾ (d−2)/2 for a scalar primary operator O, in a dimension
d ⩾ 2 CFT, excluding the case of the identity operator.

[Hint: in Euclidean signature, the nonzero commutators in the conformal algebra are:

[D,Pa] = iPa, [D,Ka] = −iKa

[Pa,Mbc] = i(δabPc − δacPb), [Ka,Mbc] = i(δabKc − δacKb)

[Ka, Pb] = 2i(δabD −Mab),

[Mad,Mbc] = i(δabMcd − δacMbd − δbdMca + δcdMba)

with D, Mab, Pa, and Ka being the generators of dilations, rotations, translations,
and special conformal transformations respectively, in a convention where D = i∆ and
P †
a = −Ka.]

(b) A massless, minimally-coupled scalar field ϕ (with negligible interactions) lives in a
5+1 dimensional AdS-Poincaré spacetime, with metric:

ds2 =
1

z2
(dz2 + dxidxjηij),

where ηij is the Minkowski metric in 4 + 1 dimensions, and the AdS radius has been set
to unity.

(i) Write down the wave equation for ϕ, and use it to determine the single
permissible (conformally-invariant) boundary condition. What are the dimensions of the
corresponding operator O and source J , in the dual holographic CFT5?

[Hint: you may wish to use the fact that ∇2 =
1
√
g
∂a
√
ggab∂b.]

(ii) Write down expressions for O and J in terms of ϕ, on the assumption that the
source J is a constant everywhere on the CFT boundary.

(iii) Now suppose that the source J(xi) is allowed to vary on the CFT boundary.
Write down a new (more complicated) expression for O in terms of the ϕ field.

(c) Now consider the same CFT5 on an Einstein universe S4 × R, with the R direction
being time, and the 4-sphere having radius r. Let the source J = 0. Using the operator-
state correspondence, determine the allowed energy levels E for CFT states whose bulk
dual contains just one quantum of the ϕ field, and no angular momentum (in the low
energy regime where interactions may be neglected).
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The ABJM model is a large N holographic CFT defined in 2+1 dimensions, in which
the bulk Newton’s constant scales like G ∼ N−3/2, for unit AdS radius. Let this CFT be
in the vacuum state of 2+1 Minkowski spacetime. For this problem you will consider only
the t = 0 Cauchy slice Σ of the boundary theory.

Consider two disjoint disk regions D1 and D2 defined on Σ, of radius R1 and R2

respectively. Let L > 0 be the shortest distance between points on the boundaries of the
disks, so that R1 +L+R2 is the distance between their centres. The mutual information
is defined as:

I = S(D1) + S(D2)− S(D1 ∪D2),

where S(A) refers to the entanglement entropy of a region A. Let Ic be the contribution
to I which is at leading order in a 1/N expansion.

(a) Write down the holographic entropy formula for S(D1), the entropy of a single disk
at leading order in N . Derive a formula showing the functional dependence of S(D1) on
ϵ, the UV cutoff on the holographic coordinate z. [You do not need to determine the
numerical coefficient of the finite term, but you do need to determine the coefficients of
any divergent terms, in terms of G.]

(b) (i) Using holographic entropy, prove that Ic ⩾ 0.

(ii) Briefly argue that, for a given R1 and R2, there should exist a critical radius
L = C(R1, R2) such that:

• when L < C, Ic > 0, and

• when L > C, Ic = 0.

[In this part you do not need to determine the value of C.]

(iii) Without calculating it, sketch roughly how you expect S(D1 ∪D2) to behave
as a function of L, in the vicinity of the phase transition at L ≈ C. (R1 and R2 are still
fixed.)

(c) Calculate the dependence of C on R1 and R2. That is, calculate C(R1, R2) up to a
single undetermined parameter X. [Hint: use conformal symmetry.]
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