MAMA/354, NST3AS/354, MAAS/354

MAT3 MATHEMATICAL TRIPOS Part III

Friday 13 June 2025 $\ \ 1:30 \ \mathrm{pm}$ to 3:30 pm

PAPER 354

GAUGE/GRAVITY DUALITY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt **ALL** questions. There are **TWO** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

(a) Derive the unitary bound $\Delta \ge (d-2)/2$ for a scalar primary operator \mathcal{O} , in a dimension $d \ge 2$ CFT, excluding the case of the identity operator.

[Hint: in Euclidean signature, the nonzero commutators in the conformal algebra are:

$$[D, P_a] = iP_a, \qquad [D, K_a] = -iK_a$$
$$[P_a, M_{bc}] = i(\delta_{ab}P_c - \delta_{ac}P_b), \qquad [K_a, M_{bc}] = i(\delta_{ab}K_c - \delta_{ac}K_b)$$
$$[K_a, P_b] = 2i(\delta_{ab}D - M_{ab}),$$
$$[M_{ad}, M_{bc}] = i(\delta_{ab}M_{cd} - \delta_{ac}M_{bd} - \delta_{bd}M_{ca} + \delta_{cd}M_{ba})$$

with D, M_{ab} , P_a , and K_a being the generators of dilations, rotations, translations, and special conformal transformations respectively, in a convention where $D = i\Delta$ and $P_a^{\dagger} = -K_a$.]

(b) A massless, minimally-coupled scalar field ϕ (with negligible interactions) lives in a 5+1 dimensional AdS-Poincaré spacetime, with metric:

$$ds^2 = \frac{1}{z^2} (dz^2 + dx^i dx^j \eta_{ij}),$$

where η_{ij} is the Minkowski metric in 4 + 1 dimensions, and the AdS radius has been set to unity.

(i) Write down the wave equation for ϕ , and use it to determine the single permissible (conformally-invariant) boundary condition. What are the dimensions of the corresponding operator \mathcal{O} and source J, in the dual holographic CFT₅?

[Hint: you may wish to use the fact that $\nabla^2 = \frac{1}{\sqrt{g}} \partial_a \sqrt{g} g^{ab} \partial_b$.]

(ii) Write down expressions for \mathcal{O} and J in terms of ϕ , on the assumption that the source J is a constant everywhere on the CFT boundary.

(iii) Now suppose that the source $J(x^i)$ is allowed to vary on the CFT boundary. Write down a new (more complicated) expression for \mathcal{O} in terms of the ϕ field.

(c) Now consider the same CFT_5 on an Einstein universe $S^4 \times \mathbb{R}$, with the \mathbb{R} direction being time, and the 4-sphere having radius r. Let the source J = 0. Using the operatorstate correspondence, determine the allowed energy levels E for CFT states whose bulk dual contains just *one* quantum of the ϕ field, and *no* angular momentum (in the low energy regime where interactions may be neglected). $\mathbf{2}$

The ABJM model is a large N holographic CFT defined in 2+1 dimensions, in which the bulk Newton's constant scales like $G \sim N^{-3/2}$, for unit AdS radius. Let this CFT be in the vacuum state of 2+1 Minkowski spacetime. For this problem you will consider only the t = 0 Cauchy slice Σ of the boundary theory.

Consider two disjoint disk regions D_1 and D_2 defined on Σ , of radius R_1 and R_2 respectively. Let L > 0 be the shortest distance between points on the boundaries of the disks, so that $R_1 + L + R_2$ is the distance between their centres. The mutual information is defined as:

$$I = S(D_1) + S(D_2) - S(D_1 \cup D_2),$$

where S(A) refers to the entanglement entropy of a region A. Let I_c be the contribution to I which is at leading order in a 1/N expansion.

(a) Write down the holographic entropy formula for $S(D_1)$, the entropy of a single disk at leading order in N. Derive a formula showing the functional dependence of $S(D_1)$ on ϵ , the UV cutoff on the holographic coordinate z. [You do not need to determine the numerical coefficient of the finite term, but you do need to determine the coefficients of any divergent terms, in terms of G.]

(b) (i) Using holographic entropy, prove that $I_c \ge 0$.

(ii) Briefly argue that, for a given R_1 and R_2 , there should exist a critical radius $L = C(R_1, R_2)$ such that:

- when L < C, $I_c > 0$, and
- when L > C, $I_c = 0$.

[In this part you do not need to determine the value of C.]

(iii) Without calculating it, sketch roughly how you expect $S(D_1 \cup D_2)$ to behave as a function of L, in the vicinity of the phase transition at $L \approx C$. (R_1 and R_2 are still fixed.)

(c) Calculate the dependence of C on R_1 and R_2 . That is, calculate $C(R_1, R_2)$ up to a single undetermined parameter X. [Hint: use conformal symmetry.]

END OF PAPER