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(a) A small-amplitude oscillatory rheometer imposes a strain γ = ϵ sinωt on a viscoelastic
fluid sample, with ϵ ≪ 1, and measures the shear-stress response τ , which can be
decomposed into the form τ = ϵ a sin (ωt+ δ), where the magnitude a(ω) and phase
shift δ(ω) are measured. How do a and δ relate to the storage and loss moduli, G′

and G′′, of the fluid? What would you expect to observe in the two limits δ(ω → 0)
and δ(ω → ∞) for a ‘standard’ viscoelastic fluid? Explain how to use measurements
of δ(ω) to estimate the characteristic elastic relaxation time of the fluid.

(b) A parallel-plate rheometer consists of two parallel disks of radius R, separated by a
thin gap of depth h, filled with a viscous fluid. The lower disk is stationary, while the
upper disk is rotated at a rotation rate Ω > 0, which, in a steady state, requires an
imposed torque T . The relationship between T and Ω provides information about the
fluid’s rheology.

Write down the expected strain rate γ̇ for the fluid in the parallel-plate rheometer,
and an integral expression for the torque T in terms of the shear stress in the fluid.
Assuming that the fluid can be described by a generalised Newtonian constitutive
relationship with viscosity η(γ̇), show that the torque can be converted into an integral
over the strain rate of the form

T =

∫ γ̇R

0
η f(γ̇, R, γ̇R) dγ̇, (∗)

for some function f , where γ̇R is a reference value of strain rate that you should define.

Use (∗) to obtain an expression for the viscosity, and thus show how one can use
measurements of T as a function of Ω from the parallel-plate rheometer to determine
η(γ̇) for the fluid.

An experiment is performed in which Ω and T are found to be related by Ω =
αh(T − Tc)/R for some α > 0 and Tc > 0. Sketch η(γ̇) in this case.
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A rheological model for the deviatoric stress τ of a certain polymeric solution can be
written in terms of a symmetric structure tensor α and strain rate tensor γ̇ = ∇u+∇uT

as

τ = η0γ̇ + b1α+ b2

[
γ̇ ·α+α · γ̇ − 2

3
(α : γ̇) I

]
,

where I is the identity tensor, α obeys the evolution equation

▽
α +

ξ

2
(γ̇ ·α+α · γ̇) + c1α = c2γ̇,

and η0, b1, b2, ξ, c1 and c2 are all non-negative constants. Here
▽
α represents the upper

convected derivative.

(a) Show that this model reduces to the usual Oldroyd-B model in some limit, which you
should specify. Under what conditions is the Oldroyd-A model recovered?

(b) Consider now the case ξ = 1, with the remaining parameters unspecified. Calculate
the shear viscosity and the two normal stress differences predicted by this model in
steady simple shear. Under what conditions does the model predict shear thinning for
the viscosity?

(c) Again with ξ = 1, consider the behaviour of this polymeric solution under steady uni-
axial extension, with velocity given in Cartesian coordinates by u = ϵ̇ (−x/2,−y/2, z)
for a constant extensional strain rate ϵ̇.

Show that the extensional viscosity ηext is a constant when b2 = 0, and find a general
expression for ηext when b2 ̸= 0.
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(a) The so-called slump test provides a simple method to estimate a fluid’s yield stress. A
cylindrical cup filled with a volume V of a yield-stress fluid of density ρ is upturned on a
horizontal surface, and then removed. The fluid slumps and spreads axisymmetrically
under gravity, coming to rest as a deposit with radius R.

You should assume that the yield stress is sufficiently weak that all the deposited fluid
flows initially when the cup is removed. You should further assume that the flow is
well described by lubrication theory and neglect any effects of surface tension. Explain
how measurement of R can provide an estimate of the fluid’s yield stress. Derive an
expression for this estimate.

Suppose the test is performed using dry sand rather than a fluid, and again assume
that all the sand flows when the cup is removed. What shape would you expect the
final deposit to take in this case? Briefly explain your answer.

(b) An alternative test is proposed using two large vertical plates, located at x = −l and
x = l, creating a slot between them with an open top and bottom. The slot is filled
with a yield-stress fluid of density ρ; if the fluid is immobile, the test is reset with
a slightly wider half-width l and performed again. The critical half-width l = lc at
which the fluid first flows down the slot is recorded.

Again neglecting any effects of surface tension, explain how measurement of lc provides
an estimate of the fluid’s yield stress and derive an expression for this estimate.

Suppose that the fluid is described by a Herschel–Bulkley rheology, which, in one
dimension, relates the shear stress τ and strain rate γ̇ by τ = sgn {γ̇} (τy +K |γ̇|n)
when |τ | > τy, with γ̇ = 0 otherwise, where τy ⩾ 0 is the yield stress, K > 0 is the
consistency and n > 0 is the power-law index. Find the flux Q of fluid down the slot
when l > lc.

A test is performed on a fluid with an unknown rheology in which it is observed that
Q ∼ (l−lc)

2 for l−lc ≪ lc and that Q ∼ l4 when l ≫ lc. Sketch a plausible constitutive
law τ(γ̇) for this fluid, noting any relevant scalings.
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