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1

The Jeans equation reads

∂

∂t
(ρ⟨vj⟩) +

∂

∂xi
(ρ⟨vivj⟩) + ρ

∂ϕ

∂xj
= 0,

where xi and vi are Cartesian position and velocity components, ρ is the density and ϕ
the potential, whilst angled brackets denote averages over the distribution function. From
this starting point, derive the tensor virial theorem in the form

1

2

d2Ijk
dt2

= 2Tjk +Πjk +Wjk.

Here, Ijk is the moment of inertia tensor, Tjk is the kinetic energy of ordered motion, Πjk

is the kinetic energy of random motion and Wjk is the potential energy tensor.

Consider a galaxy of mass M that is an oblate spheroid and is in a steady state. Let
us assume that the only streaming motions are around the symmetry axis or z-axis. Let
us define an orbital anisotropy δ using the equation Πzz = (1 − δ)Πxx. From the tensor
virial theorem, show that

v20
σ2
0

= (1− δ)
Wxx

Wzz
− 1,

where Txx = Mv20/2 and Πxx = Mσ2
0.

If the equidensity surfaces are stratified on similar concentric spheroids, the ratio
Wxx/Wzz depends only on the ellipticity ϵ and is well approximated by Wxx/Wzz ≈
(1− ϵ)−0.9. On a plot of ϵ versus v0/σ0, draw lines corresponding to an oblate spheroidal
galaxy viewed edge-on with different velocity anisotropies δ = 0, 0.1, 0.2, 0.3.

Describe qualitatively how the curves change when the galaxy is viewed at an
arbitrary inclination angle.

Mark on the plot the domain of high mass elliptical galaxies and of low mass elliptical
galaxies.

Using this plot, describe evolutionary pathways that lead to high mass elliptical
galaxies and to low mass elliptical galaxies.

Give four observational differences between high mass and low mass elliptical
galaxies.
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2 Explain why the distribution function of a galaxy obeys the collisionless Boltzmann
equation.

If F is the distribution function, show that the collisionless Boltzmann equation in
spherical polar coordinates (r, θ, ϕ) is

∂F

∂t
+ ṙ

∂F

∂r
+ θ̇

∂F

∂θ
+ ϕ̇

∂F

∂ϕ
+ v̇r

∂F

∂vr
+ v̇θ

∂F

∂vθ
+ v̇ϕ

∂F

∂vϕ
= 0,

Here, (vr, vθ, vϕ) are velocity components referred to the spherical polar coordinate system.

Show that

ṙ = vr, θ̇ = vθ/r, ϕ̇ = vϕ/(r sin θ).

By using Lagrange’s equations, show that the components of the acceleration are

v̇r =
v2θ + v2ϕ

r
− dϕ

dr
, v̇θ =

v2ϕ cot θ − vrvθ

r
, v̇ϕ =

−vϕvr − vϕvθ cot θ

r
,

where the potential is assumed to be spherically symmetric or ϕ = ϕ(r).

Let us consider spherically symmetric infall onto a spherical cluster with density
ρ(r, t). We denote averages over the distribution function by angled brackets. As the
infall is spherical, the mean velocities ⟨vθ⟩ and ⟨vϕ⟩ both vanish. Show that the continuity
equation has the form

∂ρ

∂t
+

∂ρ⟨vr⟩
∂r

+
2

r
ρ⟨vr⟩ = 0.

Let us assume that the velocity distributions have isotropic dispersions about the
mean, so the second velocity moments are

⟨v2r ⟩ = σ2 + ⟨vr⟩2, ⟨v2θ⟩ = σ2, ⟨v2ϕ⟩ = σ2.

Show that the Jeans equation takes the form

∂

∂r

(
ρσ2

)
+ ρ

∂⟨vr⟩
∂t

+ ρ⟨vr⟩
∂⟨vr⟩
∂r

= −dϕ

dr
.

Assuming a ΛCDM cosmology, explain why

dϕ

dr
=

GM(r)

r2
+

4πG

3
ρbr −

Λ

3
r,

where ρb is the homogeneous cosmological background density and Λ is the cosmological
constant.

If a is the scale factor, we define the acceleration parameter q as

q = − äa

ȧ2
=

Ωm

2
− ΩΛ,

where

Ωm =
8πGρb
3H2

, ΩΛ =
Λ

3H2
,
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and H is the Hubble parameter. Show that

dϕ

dr
=

GM(r)

r2
+ qH2r.

Now suppose the radial velocity can be written as the sum of the Hubble flow and
a peculiar infall velocity

⟨vr⟩(r, t) = H(t)r + vp(r, t).

Show that the Jeans equation can be recast as

∂

∂r

(
ρσ2

)
= −ρ

[
GM(r)

r2
+ S(r, t)

]
,

where

S(r, t) = vp
∂vp
∂r

+H

(
vp + r

∂vp
∂r

)
+

∂vp
∂t

.
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3 (a) Consider an Einstein-de Sitter Universe that consists of just baryons and
photons. Show that, prior to recombination, the photon/baryon fluid has sound speed

cs =
c√
3

[
1 +

3ρb
4ρr

]−1/2

,

where ρb and ρr are the density of baryons and radiation.

If a(t) is the scale factor, show that the behaviour of the sound speed before and
after matter-radiation equality teq behaves like

cs ∝

{
a0 if t < teq,

a−1/2 if t > teq.

How does the sound speed behave after recombination?

The comoving Jeans length of a collisional fluid with homogenous density ρ̄ and
sound speed cs takes the form

λcom =
cs
a

√
π

Gρ̄
.

Deduce how the comoving Jeans length λcom for the baryons behaves from earliest times
to after the epoch of recombination trec.

On a graph of comoving scale versus time, show the evolution of the comoving Jeans
length for adiabatic, isentropic perturbations of baryons.

Now suppose the Universe also contains dark matter particles which can be treated
as a collisionless fluid. How does the formula for the comoving Jeans length change?

Assuming the dark matter is a cold relic, derive the behaviour of the comoving Jeans
length for cold dark matter particles, identifying four epochs in which the behaviour is
different.

On a new plot, show the behaviour of λcom for cold relics from earliest times to after
the epoch of recombination trec.

(b) The Local Group contains two massive galaxies, the Milky Way and M31, that
are falling towards each other on a radial orbit. If r is the separation and M is the total
mass of the galaxies, show that

1

2
v2 − GM

r
= −1

2

GM

a
,

where v = ṙ and 2a is the maximum value of r achieved on the orbit.

Use the substitution r = a(1− cos 2η) to demonstrate

2η − sin 2η =

(
Gm

a3

)1/2

t,

where t is the age of the universe.

Defining Ω ≡ (GM/r3)1/2, show that

Ωt =
η − sin η cos η

21/2 sin3 η
.

Part III, Paper 346 [TURN OVER]



6

Defining ω = v/r, also show that

ωt =
(η − sin η cos η) cos η

sin3 η
.

By eliminating η from the last two equations, we can obtain Ω as a function of ω. It is
found numerically that an excellent approximation to the solution is given by

Ωt+ 0.85ωt = 2−3/2π.

Now consider a very remote small dwarf galaxy also belonging to the Local Group
with separation ri from the mass centre. It may be assumed the dwarf galaxy is much
further away from the mass centre than either the Milky Way or M31. Explain why

Ωit+ 0.85ωit = 2−3/2π,

where Ωi = (GM/r3i )
1/3 and ωi = vi/ri.

Suppose r0 is the distance (measured from the mass centre) at which the expansion
was stopped by the gravity of the Local Group. Show that

r0 = ri

[
1− 0.85

2−3/2π
ωit

]2/3
.
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4 Let us assume an Einstein-de Sitter Universe with zero cosmological constant and
zero curvature. Suppose Mi is the mass inside ri at time ti. Show that

Mi =
2ri

3

9Gti2
,

where ti is in the matter dominated epoch.

Now let us consider the effects of a spherically symmetric overdensity δMi(ri) so
that

Mi =
2ri

3

9Gti2
+ δMi(ri).

Explain why the dark matter shell at ri has initially a radial velocity vi given by

vi(ri) =
2ri
3ti

.

Show that the position r(ri, t) of each shell at time t is given by

d2r

dt2
= −GM(r, t)

r2
, M(r, t) =

∫ ∞

0
dri

dM

dri
H(r − r(ri, t)),

where H(x) is the Heaviside function.

The radius r(ri, t) of a given shell initially increases till it reaches a maximum value
or turnaround radius r⋆(ri) at a turnaround time t⋆(ri). Show that

t⋆(ri) =
π

2

√
r3⋆

2GMi(ri)
, r⋆(ri) = ri

Mi(ri)

δMi(ri)
.

Describe qualitatively the motion of the shells at times t > t⋆.

We will now derive an equation for the evolution of shells after turnaround. Let us
assume that the solutions have the properties of self-similarity. A solution is self-similar
if it remains identical to itself after all distances have been rescaled by a time-dependent
length R(t) and all masses by a time-dependent mass M(t). Here, R(t) is taken to be the
radius at which dark matter particles are turning around at time t, while M(t) is taken to
be the mass interior to R(t) at time t. In other words, R(t) = r⋆(ri) and M(t) = Mi(ri)
such that t⋆(ri) = t. You may assume that the self-similar solutions have the form

M(r, t) = M(t)M(r/R(t)), r(ri, t) = r⋆(ri)Λ(t/t⋆(ri),

where M and Λ are functions of a single variable. Show that

d2Λ

dτ2
= − π2

8Λ2

M(t)

Mi(ri
M

(
r⋆(ri)

R(t)

)
.

Now assume that the initial conditions are

δMi(ri)

Mi(ri)
=

(
M0

Mi(ri)

)ϵ

,

Part III, Paper 346 [TURN OVER]



8

where M0 and ϵ are parameters with 0 ⩽ ϵ ⩽ 1. What do the cases ϵ = 0 and ϵ = 1
correspond to physically?

Show that

t⋆ =
3π

4
ti

(
Mi

M0

)3ϵ/2

, r⋆(Mi) =

[
8

π2
t2⋆(Mi)GMi

]1/3
.

Hence, show that

M(t) = M0

(
4t

3πti

)2/(3ϵ)

, R(t) =

[
8t2G

π2
M(t)

]1/3
.

Deduce that
M(t)

Mi
= τ2/(3ϵ)

r⋆(Mi)

R(t)
= τ−2/3−2/(9ϵ).

Finally, show that the equation of motion for the shells after t > t⋆ is

d2Λ

d2τ
= −π2

8

τ2ϵ/3

Λ2
M

(
Λ

τ2/3+2/(9ϵ)

)
.

(This equation does not have an analytic solution but can be integrated numerically to
give the evolution of the shells after turnaround).

END OF PAPER
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