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Consider an incompressible, inviscid, non-diffusive Boussinesq fluid with a linearly

stratified background density, denoted by p(z). Let x and z be the horizontal and vertical
coordinates, respectively, with z directed upward, and let ¢ denote time. A thin cylinder,
whose axis is perpendicular to the x—z plane, undergoes small-amplitude oscillations along
the line x = 0, generating two-dimensional motion.

(a)

Starting from equations for the conservation of volume, mass and momentum, show
that for small perturbations
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where w is the vertical fluid velocity and N is the buoyancy frequency that you

should define carefully. You should carefully define all the parameters that you
introduce.

Sketch and describe the wave pattern that develops around the oscillating cylinder
for the oscillation frequency w. How does the wave pattern change for different
values of w? What is the geometric relationship between the group velocity, the
phase velocity and the wave vector?

Now suppose that the topography of the bottom is given by
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and the cylinder oscillates around the point (0, s), where s > 0, with the oscillation
frequency w such that the angle of the excited internal gravity wave is at most 6 = %
to the vertical. Consider the initial ray that is directed into the positive x and
negative z direction. Using ray tracing, show that there is a range of values of 6 and
s such that the reflected ray (after potentially multiple reflections) is directed into

the second quadrant (i.e., into the negative = and positive z direction).
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2
velocity u(x,t) in a channel of constant width b with a flat bottom located at z = 0. The
horizontal coordinate x is aligned with the channel, and the vertical coordinate z points
upward; ¢ denotes time. In the region z > h(x,t) lies an infinite quiescent layer of ambient
fluid with constant density pa < p;. Across the interface at z = h(z,t), the fluid layer
exchanges mass with the ambient fluid: it entrains ambient fluid at a constant velocity w,
and detrains into the ambient fluid at a constant velocity wy.

(a)

(b)

Consider a fluid layer of depth h(z,t) and density p1(z,t), flowing with horizontal

Considering a small volume inside the fluid layer, set up a linearised set of shallow-
water equations for the conservation of volume, mass and momentum. You should
state clearly any assumptions that you make.

Now assume that the density difference between p; and ps is small. Show that the
set of governing shallow-water equations can be written in the matrix form:

u 0 0 q 1 0 0\ /¢ —g' %
0 u h h|l] +10 1 0 hl =|we—wy (1)
% J u N 0 01 u/, —u'e

where ¢’ is the reduced gravity that you should define carefully.

Is the system hyperbolic? Find characteristics of the system and determine equations
along each of the characteristics. What happens in the limit we, wqy — 07
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3 Consider a well-insulated, long corridor—such as in a data centre—with height H
and uniform width W. At one end of the corridor is a very large sliding door that spans the
entire cross-section of the corridor. The door is opened at regular intervals for a duration
dt, with a frequency of n times per hour. Each time the door opens, a cold gravity current
enters along the floor, enabling an exchange of air with the colder outdoor environment.
This process removes heat generated by equipement within the corridor.

The air inside the corridor is assumed to be well mixed, except during the periods
when the door is open. The door is triggered to open whenever the indoor temperature
reaches a prescribed maximum value 7. The outdoor ambient remains at a constant
temperature Ty, with T' > Tj. The density of outdoor air at Ty is pg, while the density of
the indoor air at temperature 7" is p = pg — p.

(a) Consider the Navier-Stokes equations for a Boussinesq fluid,

/
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where the density is expressed as p = po + p/, with pg as the reference density and p’
representing a small perturbation. The kinematic viscosity is denoted by v, and g
is the gravitational acceleration. Derive the vorticity equation, explicitly identifying
the baroclinic generation term.

(b) To derive the expression for the gravity current (see Figure 1 on the next page),
write down the steady, inviscid, two-dimensional vorticity equation. Consider a
control volume surrounding the gravity current in a frame moving with the front.
Let the velocity upstream of the current be u; and the velocity downstream be
uz. Assuming a sharp density interface (i.e., neglecting entrainment) and using a
suitable velocity profile (or otherwise), evaluate the vorticity generation within the
control volume and the advection of vorticity across its boundaries. Hence, derive
an expression for the downstream velocity uo in the frame of the gravity current,

and show that
U2 = v/ 2g/ha

where h is the depth of the current and ¢’ = g g. Also derive an expression for the
front velocity in the lab frame.

(c¢) Give physical reason why you might expect the gravity current to move with a
constant speed.

(d) Assuming the flow is energy-conserving, sketch the gravity current, state the
relationship between the depth of the current, h, and H, and derive an expression

for the exchange flow during the time interval ¢ while the door remains open.

(e) Apply an energy balance and determine the maximum indoor temperature 7', if heat
is produced at a rate ¢ (J/s).

(f) Why it is desirable to stop mixing when the door is opened to allow exchange?
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Figure 1: Schematic of the side view of a gravity current in the frame of the front.
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4 Consider a vertical wall, x = 0 that supplies a constant heat flux,
oT
—Kpr— =
T O q0,

to an infinite ambient fluid (air) occupying the region x > 0 and maintained at a uniform
temperature Ty. At the base of the wall, a line source introduces a buoyancy flux By,
initiating a two-dimensional plume. This plume, which initially carries both volume flux,
Qo and momentum flux M, entrains ambient fluid and gains heat as it rises due to the
wall flux. The initial plume width by, along with its volume and momentum fluxes at
z = 0, are chosen to permit a self-similar description of the flow.

We define (each per unit length of the line source)

Momentum flux per unit mass: M = bW?
Volume flux: Q =bW

T —Ti —
Temperature, density coupling: 0 — (o = p)

To Po

— T - T,
Buoyancy flux: B:bWMgEbWQ

J2 To

g

where z measures the vertical height, b = b(z) is the width of the plume, W = W(z) is
the tophat vertical velocity, T' = T'(z) is the tophat temperature of the plume fluid.

(a) Explain the Boussinesq approximation and Batchelor’s entrainment hypothesis.
Discuss how each applies in the context of this plume.

(b) Write down the advection—diffusion equation for temperature. Scale the equation
using characteristic height hg, width by, and vertical velocity wg. Use continuity to
estimate the spanwise velocity scale. Assuming a slender plume, i.e. Z—g =€ 1,
show that vertical diffusion is negligible compared to horizontal diffusion.

(c) Integrate the volume, momentum, and advection—diffusion equations across the
plume cross-section (assuming top-hat profiles, and and applying entrainment as-
sumption). Combine the integrated advection—diffusion and volume flux equations
to derive an evolution equation for the buoyancy flux B(z).

(d) Perform a dimensional analysis of the governing equations and show the scaling
relations, Q ~ 2% and M ~ z°/3.

(e) Introduce a suitable substitution of variable and subsequently similarity variables
and obtain the similarity solution for the plume quantities; momentum flux, volume
flux, width and temperature of the plume.

(f) Using the similarity solution, determine the expression for the initial plume width
bo.

END OF PAPER
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