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1 (a) For a closed system comprising a binary fluid mixture of two species, briefly
say what is meant by the compositional order parameter ϕ(r). In what sense this is
‘conserved’? Write down the Landau Ginzburg free energy F [ϕ], and explain why a linear
term in ϕ has no effect.

(b) Consider a binary fluid in which one of the species (only) can show polar ordering
of molecular orientations. For the purposes of this question, the polar order parameter
can be viewed as a scalar p(r), as would anyway be true in one dimension. The following
free energy functional can be used to describe such a system:

F [ϕ, p] =

∫ {
a

2
ϕ2 +

b

4
ϕ4 +

κ1
2
(∇ϕ)2 +

c

2
ϕp2 +

A

2
p2 +

B

4
p4 +

κ

2
(∇p)2

}
dr.

Show that (i) the coupling term c
2ϕp

2 cannot be ignored despite being linear in ϕ; (ii) the
coupling constant c can be chosen positive without loss of generality. Also, give physical
reasons why (iii) there is no term in ϕp; and (iv) b and B cannot be negative.

(c) Explain why, at mean field level (uniform ϕ, p) one may construct for the
conserved variable ϕ a free energy density F/V = f(ϕ) by unconstrained minimization
over p. Taking positive c, show that the result is

f(ϕ) =
a

2
ϕ2 +

b

4
ϕ4 − C

2
(ϕ− ϕo)

2θ(ϕo − ϕ)

where θ(x) ≡ 1
2

(
|x|
x + 1

)
is the Heaviside function, and C and ϕo are constants, which

you should find in terms of the parameters in F [ϕ, p]. Interpret ϕo.

(d) Restricting attention to parameter choices with a > 0 and for which ϕo = 0:

(i) Sketch f(ϕ) and show that the system will phase separate for C > Cc, giving
the value of Cc.

(ii) Explain a graphical construction on f(ϕ) that determines the two binodal
densities ϕ1, ϕ2. Alternatively and for equal credit, construct but do not
solve two simultaneous equations for ϕ1, ϕ2 by equating chemical potential
and pressure in the two phases. Is this mean-field phase transition continuous
or discontinuous?

(e) Now consider F [ϕ, p] for case b = κ1 = 0. Here the ϕ field can be eliminated by
Gaussian integration to give a free energy function F [p] that governs the statistics of p(r).

(i) Assuming that the result of the Gaussian integration can also be found by

setting δF [ϕ,p]
δϕ(r) = 0, show that

F [p] =

∫ {
A

2
p2 +

B̃

4
p4 +

κ

2
(∇p)2

}
dr

with B̃ = B − c2

2a . Further assuming that A > 0 and that B̃ is negligible,
identify the functional form of the correlator Sp(q) ≡ ⟨pqp−q⟩ at Fourier
wavevector q.

(ii) Denoting the Fourier transform of Sp(q) by Cp(r), say what you can about
the likely functional form of the real-space correlator for the ϕ field, Cϕ(r) ≡
⟨ϕ(0)ϕ(r)⟩ − ⟨ϕ⟩2. (You are not asked to calculate Cp(r) or Cϕ(r) explicitly.)
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2 (a) Starting from a suitable Landau Ginzburg free energy F =
∫
{f(ϕ)+κ(∇ϕ)2/2}dr,

and stating any assumptions you make, derive the hydrodynamic (noiseless) equations of
Model B in the form

ϕ̇ = −∇ · J,
J = −M∇(aϕ+ bϕ3 − κ∇2ϕ).

(b) Show by considering force balance on a 3D spherical droplet of (large) radius R
with positive ϕ, in coexistence with a surrounding phase of negative ϕ, that the coexistence
condition is ϕ = ±ϕB + δ where ϕB = (−a/b)1/2 , and δ = λ/R where λ = σ

αϕB
with

α = f ′′(ϕB) and σ the interfacial tension.

(c) Briefly explain why, if the bulk phase has ϕ = −ϕB far from the droplet (rather
than ϕ = −ϕB + δ), the droplet will slowly evaporate. Show that, writing ϕ = −ϕB + g(r)
in the exterior region and taking a quasi-static approximation, one has ∇2g = 0 with
boundary conditions g = δ at the droplet surface and g = 0 at infinity. Show also that
the current normal to the droplet surface is Jn = −Mα∇ng, with ∇n a derivative in the
normal direction. Show further that the normal velocity of the interface obeys vn = − Jn

2ϕB
.

(d) Now consider a flat interface in the horizontal (x, y) plane between bulk
coexisting phases arranged so that ϕ → ∓ϕB for z → ±∞, which is perturbed by a
small height perturbation h(x, y) in the z direction. Assume that the same quasi-static
approximation holds with boundary condition g(x, y, 0) = − σK

2αϕB
, where K(x, y) is the

interfacial mean curvature. Noting that to leading order in small h, K = (∂2
x+∂2

y)h, solve
∇2g = 0 in the upper half space for a sinusoidal height perturbation h = η sin(qx). Hence
find the normal current Jn(x, y, z) at z = 0+.

(e) Supposing this current to be the only contribution to vn = ḣ, show that
η̇ = −ν|q|3η and find the constant ν. Confirm that ν > 0, give a brief physical argument
for its sign. The nonanalytic decay rate η|q|3 at low q is a signature of nonlocal dynamics
for h(x, y). Explain why this arises here.

(f) In practice the above calculation for ν gives half the correct value. Why?

Part III, Paper 344 [TURN OVER]



4

3 For a polar liquid crystal with order parameter p(r, t) the law of advection is

Dp

Dt
= (∂t + v.∇)p+Ω.p− ξD.p (1)

where Ω and D are respectively the antisymmetric and symmetric parts of the velocity
gradient tensor ∇ivj . Here ξ is a material-dependent parameter.

(a) Without detailed calculations, explain why the coefficient of the Ω term must
be unity, as written, rather than a second material-dependent parameter.

(b) By considering the advective free energy increment in a small incompressible
displacement u = v∆t, show that the stress tensor Σp

ij(r), caused by the polar order

parameter, obeys Σp
ij = Σ

(1)
ij +Σ

(2)
ij +Σ

(3)
ij , where

∇iΣ
(1)
ij = −pi∇jhi

Σ
(2)
ij = (pihj − pjhi)/2

Σ
(3)
ij = ξ(pihj + pjhi)/2

with h(r) ≡ δF/δp(r) the molecular field.

(c) A certain laboratory device is designed to create an incompressible, uniaxial
extensional flow in three dimensions. This is a uniform flow field v(x, y, z) for which
Ω = 0 and D is diagonal in (x, y, z) axes with eigenvalues Dxx = γ, Dyy = Dzz = −γ/2.

(i) Assuming that p remains uniform in space, and is governed by the usual
hydrodynamic equation of motion Dp/Dt = −Γh, show that the effect of the
flow is to shift h → h̃ ≡ h+ α(px,−py/2,−pz/2) and find the constant α.

(ii) Taking the free energy density for uniform states to be F = a
2p

2 + b
4p

4 with

b > 0, find a modified free energy of the form Fmod = 1
2piAijpj+

b
4p

4 describing
the system under uniform flow conditions. (You are not asked to go beyond
mean field theory.) For each sign of α, identify from Fmod the character of
the phase transition whereupon p first becomes nonzero on decreasing a and
find the critical value ac and p(a). In each case include a careful statement
of what symmetry gets spontaneously broken at the ordering transition.

(iii) For the case with α < 0 and in the ordered phase, find the order parameter
stress Σp

ij in the flowing system.
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