MAMA/342, NST3AS/342, MAAS/342, NST3PHY/2/TQM

MAT3 MATHEMATICAL TRIPOS Part III

Monday 16 June 2025 $9{:}00$ am to 11:00 am

PAPER 342

TOPOLOGICAL QUANTUM MATTER

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** This question considers topological order on the cylinder with boundaries C_1 and C_2 , as shown below. The cylinder has length L and circumference C.

Consider the surface code with Hamiltonian

$$H_0 = -J \sum_{v \in V} A_v - J \sum_{p \in P} B_p, \quad J > 0, \quad A_v = \prod_{j \in v} X_j, \quad B_p = \prod_{j \in p} Z_j,$$

where qubits j are placed on the links of a square lattice, V is the set of vertices, P is the set of plaquettes. We use a convention where an eigenvalue $a_v = -1$ for A_v and $b_p = -1$ for B_p signifies an e anyon at v and an m anyon at p, respectively.

- (a) Assuming that C_1 and C_2 are parallel with lattice links, define A_v and B_p at an *m*-condensing boundary. Explain your answer.
- (b) Consider the perturbed surface code with Hamiltonian $H = H_0 + \delta H$ where $\delta H = h \sum_j X_j$ with $|h| \ll J$. Both C_1 and C_2 condense m. Obtain the ground state degeneracy for h = 0. Obtain an estimate for the splitting of ground state energies as the function of |h|/J, L and C. How (if at all) does the answer change if C_1 and C_2 condense e instead?

Consider now matrix Chern Simons theory on the cylinder above, focusing on a theory with $4 \times 4 \ K$ matrix

$$K = \begin{pmatrix} & M \\ M & \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Anyons are characterised by vectors $\mathbf{q} = (q_1, q_2, q_3, q_4)^{\mathrm{T}} \in \mathbb{Z}^4$. Encircling an anyon with \mathbf{q} by an anyon with \mathbf{q}' yields a phase factor $\exp(2i\theta_{\mathbf{q},\mathbf{q}'})$ with $\theta_{\mathbf{q},\mathbf{q}'} = \pi \mathbf{q} \cdot K^{-1}\mathbf{q}'$. Suppose that both C_1 and C_2 condense all anyons with $\mathbf{q} \in \mathcal{L} \subset \mathbb{Z}^4$, where \mathcal{L} is the subspace of integer vectors with $q_3 = q_4 = 0$.

- (c) Suppose that anyons with \mathbf{q} condense at C_1 and consider the unitary operation $W_{\mathbf{q}}(x, x')$ of creating such an anyon at $x \in C_1$, dragging it into the bulk and returning it to $x' \in C_1$ to annihilate. For any ground state $|\psi\rangle$ of the system, $W_{\mathbf{q}}(x, x')|\psi\rangle = |\psi\rangle$ for any $x, x' \in C_1$ and any $\mathbf{q} \in \mathcal{L}$. By considering the commutator with $W_{\mathbf{q}'}(y, y')$ for suitable $y, y' \in C_1$ and anyon with \mathbf{q}' (not necessarily in \mathcal{L}) that condenses at C_1 , show that $\mathbf{q}' = \mathbf{u} + K\mathbf{l}$ where $\mathbf{u} \in \mathcal{L}$ and $\mathbf{l} \in \mathbb{Z}^4$. (The same holds for C_2 .)
- (d) Use the result from (c) to lower bound the ground state degeneracy of this system.

2 This question is on quantum error correction and topological order, considering systems of n qubits. Below we denote by \mathcal{P}_n the corresponding n-qubit Pauli group, and consider a set $\{\tilde{E}_a | a = 1, \ldots, e\}$ of error operators.

(a) The Knill-Laflamme (KL) conditions can be formulated as

$$\Pi_{\mathcal{L}}\tilde{E}_{a}^{\dagger}\tilde{E}_{b}\Pi_{\mathcal{L}} = c_{ab}\Pi_{\mathcal{L}}, \quad \forall a, b \in \{1, \dots, e\},$$

where $\Pi_{\mathcal{L}}$ is the projector onto the code space \mathcal{L} . Motivate the KL conditions by considering requirements for the set $\{\tilde{E}_a | a = 1, \ldots, e\}$ to be correctable.

Consider now quantum error correction with a stabilizer code of distance d.

(b) Define the centralizer $\mathcal{C}(\mathcal{S})$ of the stabilizer group \mathcal{S} . Express the set LOs of logical operators in terms of $\mathcal{C}(\mathcal{S})$ and \mathcal{S} . Show that for a set of error operators proportional to Pauli operators, $\tilde{E}_a \propto E_a \in \mathcal{P}_n$, the KL conditions hold if and only if

$$E_a^{\dagger} E_b \notin \text{LOs}, \quad \forall a, b \in \{1, \dots, e\}.$$

(c) Show that from wt(E_a) < d/2, $\forall a \in \{1, \ldots, e\}$ it follows that the KL conditions are satisfied. [Here wt(E_a) is the weight of E_a .] By providing a counterexample or otherwise, show that the converse does not hold.

Consider now the two-dimensional surface code with Hamiltonian

$$H_0 = -J \sum_{v \in V} A_v - J \sum_{p \in P} B_p, \quad J > 0, \quad A_v = \prod_{j \in v} X_j, \quad B_p = \prod_{j \in p} Z_j,$$

where qubits j are placed on the links of a square lattice, V is the set of vertices, P is the set of plaquettes. Suppose that the system is on a manifold such that it has a ground space furnishing k logical qubits.

- (d) Show that the projector $\Pi_{\mathcal{L}}$ to the ground space \mathcal{L} of H_0 satisfies the KL conditions for any "suitably local" error set with $\tilde{E}_a \propto E_a \in \mathcal{P}_n$. Define what "suitably local" means in terms of the code distance d and the supports of E_a .
- (e) Consider now the perturbed surface code with Hamiltonian $H = H_0 + \delta H$ where $\delta H = h_X \sum_j X_j + h_Y \sum_j Y_j + h_Z \sum_j Z_j$ with $0 < |h_{X,Y,Z}| \ll J$. By invoking local unitary equivalence, show that there exist n k independent stabilizer generators \tilde{S}_j such that $\tilde{S}_j |\varphi_{\alpha}\rangle = |\varphi_{\alpha}\rangle$ for the 2^k lowest-energy eigenstates $|\varphi_{\alpha}\rangle$ of H, but now \tilde{S}_j are only quasilocal and $\tilde{S}_j \notin \mathcal{P}_n$. Show that for any set of Pauli errors, the subspace spanned by these $|\varphi_{\alpha}\rangle$ can satisfy the KL conditions at most approximately.

UNIVERSITY OF CAMBRIDGE

3 This question is on fermions, Majorana zero modes (MZMs), and their use for quantum computing.

- (a) Define fermion parity, fermion-parity-even operators, and fermion-parity-odd operators. By considering the compatibility of measurements in space-like separated regions or otherwise, show that local observables must be fermion-parity even.
- (b) Consider the mean-field description of superconductors in terms of the Hamiltonian

$$H = \frac{1}{2} \begin{pmatrix} \mathbf{a}^{\dagger}, \mathbf{a} \end{pmatrix} H_{\text{BdG}} \begin{pmatrix} \mathbf{a} \\ \mathbf{a}^{\dagger} \end{pmatrix}, \quad H_{\text{BdG}} = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix}.$$

Suppose that H_{BdG} has locally nondegenerate zero-energy solutions ψ_j , exponentially localised around \mathbf{x}_j with decay length ξ , and separated by distance $\ell = \min_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|$. Working in the $\ell/\xi \to \infty$ limit, show that the ψ_j give rise to operators γ_j (MZMs) that, when suitably normalised, satisfy

$$\gamma_j = \gamma_j^{\dagger}, \quad \{\gamma_i, \gamma_j\} = 2\delta_{ij}\mathbb{1}.$$

Show that a system with 2M such MZMs furnishes a ground space \mathcal{L} with k = M - 1 topological qubits.

(c) Show that for any local observable \mathcal{O} and orthonormal basis $\{|\varphi_{\alpha}\rangle\}$ in \mathcal{L} , we have $\langle \varphi_{\alpha}|\mathcal{O}|\varphi_{\beta}\rangle = c_{\mathcal{O}}\delta_{\alpha\beta}$ with constant $c_{\mathcal{O}}$. Explain how and why the result changes for $1 \ll \ell/\xi < \infty$.

The rest of the question considers quantum computing with these k = M - 1 topological qubits for $M \ge 3$ (i.e., we use the dense encoding).

(d) Suppose that MZMs γ_{2M} and γ_{2M-1} are used as ancillas such that the system is in a state $|\psi\rangle$ satisfying $i\gamma_{2M}\gamma_{2M-1}|\psi\rangle = |\psi\rangle$. Show that

$$\exp(i\pi\gamma_1\gamma_2\gamma_3\gamma_4/4)|\psi\rangle \propto \exp(\pi\gamma_3\gamma_{2M}/4)\frac{\mathbb{1}-i\gamma_3\gamma_{2M-1}}{2}\frac{\mathbb{1}+\gamma_1\gamma_2\gamma_4\gamma_{2M-1}}{2}|\psi\rangle.$$

(e) Show that $\Upsilon_{123} = i\gamma_1\gamma_2\gamma_3$ and γ_4 satisfy the same algebraic relations as a pair of Majorana fermions. Hence show that $\exp(\pi\Upsilon_{123}\gamma_4/4)$ can be used to exchange Υ_{123} and γ_4 . Using this and the result from (d), show that using braids $R_{ab} =$ $\exp(\pi\gamma_a\gamma_b/4)$ and suitable fermion-parity measurements one can map, in the sense of the action on $|\psi\rangle$, the MZM γ_1 to any Hermitian fermion-parity-odd MZM monomial of γ_j $(j \in \{1, \ldots 2M - 2\})$.

END OF PAPER

Part III, Paper 342