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1 This question considers topological order on the cylinder with boundaries C1 and
C2, as shown below. The cylinder has length L and circumference C.

Consider the surface code with Hamiltonian

H0 = −J
∑
v∈V

Av − J
∑
p∈P

Bp, J > 0, Av =
∏
j∈v

Xj , Bp =
∏
j∈p

Zj ,

where qubits j are placed on the links of a square lattice, V is the set of vertices, P is the
set of plaquettes. We use a convention where an eigenvalue av = −1 for Av and bp = −1
for Bp signifies an e anyon at v and an m anyon at p, respectively.

(a) Assuming that C1 and C2 are parallel with lattice links, define Av and Bp at an
m-condensing boundary. Explain your answer.

(b) Consider the perturbed surface code with Hamiltonian H = H0 + δH where
δH = h

∑
j Xj with |h| ≪ J . Both C1 and C2 condense m. Obtain the ground

state degeneracy for h = 0. Obtain an estimate for the splitting of ground state
energies as the function of |h|/J , L and C. How (if at all) does the answer change
if C1 and C2 condense e instead?

Consider now matrix Chern Simons theory on the cylinder above, focusing on a theory
with 4× 4 K matrix

K =

(
M

M

)
, M =

(
1 2
2 1

)
.

Anyons are characterised by vectors q = (q1, q2, q3, q4)
T ∈ Z

4. Encircling an anyon with q
by an anyon with q′ yields a phase factor exp(2iθq,q′) with θq,q′ = πq ·K−1q′. Suppose
that both C1 and C2 condense all anyons with q ∈ L ⊂ Z

4, where L is the subspace of
integer vectors with q3 = q4 = 0.

(c) Suppose that anyons with q condense at C1 and consider the unitary operation
Wq(x, x

′) of creating such an anyon at x ∈ C1, dragging it into the bulk and
returning it to x′ ∈ C1 to annihilate. For any ground state |ψ⟩ of the system,
Wq(x, x

′)|ψ⟩ = |ψ⟩ for any x, x′ ∈ C1 and any q ∈ L. By considering the commutator
with Wq′(y, y′) for suitable y, y′ ∈ C1 and anyon with q′ (not necessarily in L) that
condenses at C1, show that q′ = u+Kl where u ∈ L and l ∈ Z

4. (The same holds
for C2.)

(d) Use the result from (c) to lower bound the ground state degeneracy of this system.
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2 This question is on quantum error correction and topological order, considering
systems of n qubits. Below we denote by Pn the corresponding n-qubit Pauli group, and
consider a set {Ẽa|a = 1, . . . , e} of error operators.

(a) The Knill-Laflamme (KL) conditions can be formulated as

ΠLẼ
†
aẼbΠL = cabΠL, ∀a, b ∈ {1, . . . , e},

where ΠL is the projector onto the code space L. Motivate the KL conditions by
considering requirements for the set {Ẽa|a = 1, . . . , e} to be correctable.

Consider now quantum error correction with a stabilizer code of distance d.

(b) Define the centralizer C(S) of the stabilizer group S. Express the set LOs of logical
operators in terms of C(S) and S. Show that for a set of error operators proportional
to Pauli operators, Ẽa ∝ Ea ∈ Pn, the KL conditions hold if and only if

E†
aEb /∈ LOs, ∀a, b ∈ {1, . . . , e}.

(c) Show that from wt(Ea) < d/2, ∀a ∈ {1, . . . , e} it follows that the KL conditions
are satisfied. [Here wt(Ea) is the weight of Ea.] By providing a counterexample or
otherwise, show that the converse does not hold.

Consider now the two-dimensional surface code with Hamiltonian

H0 = −J
∑
v∈V

Av − J
∑
p∈P

Bp, J > 0, Av =
∏
j∈v

Xj , Bp =
∏
j∈p

Zj ,

where qubits j are placed on the links of a square lattice, V is the set of vertices, P is
the set of plaquettes. Suppose that the system is on a manifold such that it has a ground
space furnishing k logical qubits.

(d) Show that the projector ΠL to the ground space L of H0 satisfies the KL conditions
for any “suitably local” error set with Ẽa ∝ Ea ∈ Pn. Define what “suitably local”
means in terms of the code distance d and the supports of Ea.

(e) Consider now the perturbed surface code with Hamiltonian H = H0 + δH where
δH = hX

∑
j Xj + hY

∑
j Yj + hZ

∑
j Zj with 0 < |hX,Y,Z | ≪ J . By invoking local

unitary equivalence, show that there exist n−k independent stabilizer generators S̃j
such that S̃j |φα⟩ = |φα⟩ for the 2k lowest-energy eigenstates |φα⟩ of H, but now S̃j
are only quasilocal and S̃j /∈ Pn. Show that for any set of Pauli errors, the subspace
spanned by these |φα⟩ can satisfy the KL conditions at most approximately.

Part III, Paper 342 [TURN OVER]



4

3 This question is on fermions, Majorana zero modes (MZMs), and their use for
quantum computing.

(a) Define fermion parity, fermion-parity-even operators, and fermion-parity-odd oper-
ators. By considering the compatibility of measurements in space-like separated
regions or otherwise, show that local observables must be fermion-parity even.

(b) Consider the mean-field description of superconductors in terms of the Hamiltonian

H =
1

2

(
a†,a

)
HBdG

(
a
a†

)
, HBdG =

(
h ∆

−∆∗ −h∗
)
.

Suppose thatHBdG has locally nondegenerate zero-energy solutions ψj , exponentially
localised around xj with decay length ξ, and separated by distance ℓ = mini ̸=j |xi −
xj |. Working in the ℓ/ξ → ∞ limit, show that the ψj give rise to operators γj
(MZMs) that, when suitably normalised, satisfy

γj = γ†j , {γi, γj} = 2δij1.

Show that a system with 2M such MZMs furnishes a groundspace L with k =M−1
topological qubits.

(c) Show that for any local observable O and orthonormal basis {|φα⟩} in L, we have
⟨φα|O|φβ⟩ = cOδαβ with constant cO. Explain how and why the result changes for
1 ≪ ℓ/ξ <∞.

The rest of the question considers quantum computing with these k =M − 1 topological
qubits for M ⩾ 3 (i.e., we use the dense encoding).

(d) Suppose that MZMs γ2M and γ2M−1 are used as ancillas such that the system is in
a state |ψ⟩ satisfying iγ2Mγ2M−1|ψ⟩ = |ψ⟩. Show that

exp(iπγ1γ2γ3γ4/4)|ψ⟩ ∝ exp(πγ3γ2M/4)
1− iγ3γ2M−1

2

1+ γ1γ2γ4γ2M−1

2
|ψ⟩.

(e) Show that Υ123 = iγ1γ2γ3 and γ4 satisfy the same algebraic relations as a pair
of Majorana fermions. Hence show that exp(πΥ123γ4/4) can be used to exchange
Υ123 and γ4. Using this and the result from (d), show that using braids Rab =
exp(πγaγb/4) and suitable fermion-parity measurements one can map, in the sense of
the action on |ψ⟩, the MZM γ1 to any Hermitian fermion-parity-odd MZM monomial
of γj (j ∈ {1, . . . 2M − 2}).
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