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1 (a) Consider

I(a) =

∫ ∞

0

dx

(a+ x)1/2(1 + x)
.

Use the divide and conquer method to show that, for a→ 0,

I(a) ∼ π − 2
√
a+ πa/2.

You may note that arctanx ∼ x− x3/3 as x→ 0.

(b) The function f(λ) is defined as

f(λ) =

∫
C
eλ((z−1)3+3(z−1))dz

where λ is a large positive real constant and C is a contour extending from −∞ to +∞eiψ

in the sector where
π

6
< ψ <

π

2
.

Locate the saddle points z± for the exponent function ϕ(z) = (z − 1)3 + 3(z − 1) in the
complex plane, and also sketch lines of constant ℜ(ϕ(z)), including those passing through
the saddles (i.e. the stationary phase lines), and the contours of steepest descent/ascent
given by ℑ(ϕ(z)) = ℑ(z±). Label the ‘hills’ and ‘valleys’.

By deforming C onto the appropriate steepest descent path, show that

f(λ) ∼
√

π

3λ
eiπ/4+2iλ.

Now suppose that C starts from z = 1 and tends to ∞ in the same sector as above.
Identify the appropriate path that should be taken to obtain asymptotic contributions
from the saddle and the end point, and hence deduce that

f(λ) ∼
√

π

3λ
eiπ/4+2iλ − 1

3λ
.
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2 (a) A system variable, u(t) is governed by the equation

d2u

dt2
+ (1 + ϵ2f + ϵ sin t)u = 0,

where f is a real-valued constant and 0 < ϵ≪ 1. Use the method of multiple scales to find
the range of values of f for which solutions to this equation remain bounded (at least up
to order unity in the slow time T = ϵ2t), irrespective of the initial conditions.

(b) The flow of heat through an inhomogeneous bar is governed by the diffusion
equation, which, in non-dimensionalised form is

∂u

∂t
=

∂

∂x

(
1

d(x/ϵ)

∂u

∂x

)
,

where u is the temperature and d(X) is a non-negative periodically-varying coefficient,
with period 1, that is related to the diffusion. Note that d(X) may be a discontinuous
function, but the temperature and heat flux are continuous, and d(X) has (finite) mean

d̄ =

∫ 1

0
d(X)dX.

Derive the homogenized, or mean-field, equation when ϵ→ 0.

Suppose d(X) is a sawtooth function (i.e. a piecewise-linear periodic function) with
profile

d(X) =

{
2X/p, 0 ⩽ X ⩽ p,

2(1−X)/(1− p), p ⩽ X ⩽ 1.

Determine d̄, and show by direct substitution or otherwise that the solution of the
homogenized bar with conditions

u(x, 0) = 0; u(x, t) → 0 for x→ ∞; u(0, t) = T0 for t > 0,

takes the similarity form

u(x, t) = T0

(
1− erf

(
x

2
√
t

))
, where erf(ζ) =

2√
π

∫ ζ

0
e−z

2
dz.
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3 (a) Derive the leading order WKB solution of the equation

d2y

dx2
+ k2(ϵx)y = 0,

for ϵ → 0, and specify restrictions on its validity. Use this to determine the asymptotic
solution in x > 0 for the case k2(X) = 1 +X2, y(0) = 1, dydx(0) = 0.

In the last part you may find the substitution X = sinhu useful.

(b) Consider the boundary value problem

ϵ
d2y

dx2
+ (1 + x)

dy

dx
+ xy = 0, y(0) = 0, y(1) = 2.

If ϵ→ 0 identify the location of an inner layer.

The first two terms of the outer solution are, in the usual notation, given as:

y(1)(x) = y0(x)+ϵ y1(x) = (1+x)e1−x+ϵ [−(1 + x) ln(1 + x) + (1 + x) ln 2 + (x− 1)] e1−x.

By matching, find the first two non-zero terms in the inner expansion. Hence determine
the uniformly-valid additive composite expansion, which is correct to O(ϵ).

END OF PAPER

Part III, Paper 336


