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1 Consider the two-dimensional problem of propagation of a time-harmonic plane
wave initially given by ψ(x, z) = eikx .

Assume that the wave is propagating in free space and incident at x = −ξ onto a
vertical layer in the region x ∈ [−ξ, 0]. The layer has refractive index n(x, z) = 1 + w(z),
where w(z) is a continuous random fluctuation with mean zero, stationary in z, with
variance σ2 = ⟨w(z)2⟩ ≪ 1, and normally distributed. We assume that the field
acquires only a phase change on going through the layer, which therefore acts as a ‘phase
screen’. Under the assumption of weak scattering, the parabolic wave equation holds, and
calculations can be carried out for the reduced wave E(x, z).

(i) Calculate the average of the field ⟨E(x, z)⟩ at x = 0, on emerging from the
phase screen. Comment on whether this result can also hold approximately if the p.d.f.
(probability distribution function) of the random refractive index fluctuations is not
normally distributed.

Then derive an equation for the evolution of the mean field ⟨E(x, z)⟩ for x ⩾ 0.

(ii) By using Fourier transforms, or otherwise, derive an equation for the evolution
of the second moment defined by ⟨E(x, z1)E(x, z2)⟩ for x ⩾ 0 and write an expression for
the solution for this second moment at an arbitrary value x.

(iii) Now write the total field E(x, zj) as a sum of a coherent field ⟨E(x, zj)⟩ and an
incoherent (diffuse) field Ed(x, zj) = Aj + iBj , where Aj and Bj are respectively the real
and imaginary parts of Ed(x, zj), and j = 1, 2, so

Ej = ⟨E⟩+Aj + iBj . (1)

Using this notation, and given that we can take ⟨Aj⟩ = ⟨Bj⟩ = 0 because of the assumption
of weak scatter, and disregarding terms of order greater than 2 in the diffuse field, derive
an expression just in terms of Aj for the spatial correlation of intensity fluctuations, ρI ,
defined as

ρI =
⟨I1I2⟩ − ⟨I⟩2

⟨I2⟩ − ⟨I⟩2
, (2)

where I = E(x, z)E∗(x, z) is the intensity of the field at (x, z), I1 and I2 are the intensities
measured at two points (x, z1) and (x, z2) in the same x plane, and the subscripts 1 and
2 refer to coordinates z1 and z2.
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2 An acoustic field ψ(r) is generated by an incident plane wave ψi(r) = eik0x̂0·r

travelling in the direction of the unit vector x̂0 in a 3-dimensional non-scattering medium
which includes an inhomogeneity occupying a region D, so that the refractive index n(r)
is:

n(r) =

{
1 + nδ if r ∈ D

1 otherwise
(1)

where D is a bounded, connected domain containing the origin, k0 is real-valued, and we
assume that nδ(r) ≪ 1 . The scattered field ψs = ψ − ψi satisfies the Helmholtz equation

∇2ψs + k2(r)ψs = 0 , (2)

where k(r) = k0n(r), with Sommerfeld boundary condition at infinity.

(i) Consider the inverse problem of recovering the refractive index of the inhomo-
geineity D from measurements of the scattered field ψs(r) in the far fiield.

Using the first order Born approximation for the scattered field, derive a far field
approximation for ψs(r) and relate this to the far field pattern at r generated by an
incident plane wave in the direction x̂0, denoted by f∞(x̂0, r).

Hence, write an expression giving the formal solution of this inverse problem, i.e. the
so-called scattering potential V (r) = k20(1− n2(r)).

(ii) Define the operator T : L2(D) 7→ L2(S1) which maps the scattering potential
V (r) ∈ L2(D) onto a far field pattern f∞(r̂, k) ∈ L2(S1), where S1 is the unit sphere, and
r̂ is the unit vector in the direction r.

Given the usual definition of inner product for functions in Hilbert spaces, consider the
Fourier transform operator F operating on the space of functions g ∈ L2(R3) and the
inverse Fourier transform operator F−1, which also operates on the same space. Find the
adjoint F∗ of F .

Hence find an expression for the adjoint T ∗ of T , and deduce that the solution V (r) found
for the inverse problem in (i) is the least squares solution of this inverse problem.

(iii) Comment on possible sources of ill-posedness for this inverse problem.
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3 Consider the inverse problem of finding x, given data y, from

Ax = y , (1)

where A : X → Y is a given compact linear operator between two Hilbert spaces, and
x ∈ X, y ∈ Y .

(i) Give the definition of a regularisation strategy for this inverse problem, for given
noisy data, i.e. when the r.h.s. of (1) is some yδ with ∥ y(δ) − y ∥⩽ δ

Explain why a regularisation strategy is needed to obtain solutions to this inverse problem
with noisy data.

Define Tikhonov regularisation and write a formal expression for the Tikhonov regularised
solution of (1).

Explain briefly why the Tikhonov regularised solution is stable.

(ii) Define a singular value system {σi;ui, vi} for A, and show how it can be used
to construct the Tikhonov regularised solution.

(iii) The iterated Tikhonov method for (1) is defined by:

αxn+1 = αxn −A∗Axn +A∗y (2)

for some α > 0, and with the first term x0 given by the Tikhonov regularised solution
derived in (ii). Note that, similarly to Landweber iteration, the (n+1)th term in iterated
Tikhonov can be written in closed form, i.e. as a function of A∗y only, and not of xn.

By using the singular value system and the closed form of xn, show that the nth iterate
in the iterated Tikhonov method can be written as

xn =
∞∑
i=1

gα(y, ui)vi , (3)

where (·, ·) denotes an inner product.

Derive an expression for the function gα.

[Hint: you may assume that an analogous expression to the partial sum of a geometric
series

∑n−1
k=0 r

k = 1−rn

1−r holds for the operators appearing here.]
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