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1 Shallow water equations
(i) Consider a layer of fluid of homogeneous density, ρ, with an upper free surface

at z = H0 − hb + η(x, y, t) and a rigid lower boundary at z = −hb and where η is the free
surface height and H0 is the mean height. State the shallow water (SW) equations for this
system. What assumptions are required to derive these equations? Briefly describe why
the SW system is useful in the study of the atmosphere and the ocean.

Derive an expression for the shallow water potential vorticity, showing that it is
materially conserved.

(ii) Consider the above system with hb = 0 on an f -plane. In the initial state,
the free surface is flat, so that the fluid layer everywhere has depth H0 and the velocity
components are

u(x, y, 0) = 0, v(x, y, 0) = v0 sgn(x), (1)

where v0 is a constant. (Note: sgn(x) = x/|x| for x ̸= 0 and 0 for x = 0.) Assume that the
SW equations apply and may be linearised about the state of rest with uniform depth H0.
Show, carefully justifying your reasoning, that in the ultimate steady state the free-surface
displacement η(x, y) is given by [

∂2

∂x2
− 1

R2
d

]
η = F (x), (2)

where you should give expressions for Rd and F (x). Hence derive the steady-state solutions
for η, u and v.

Calculate the total potential and kinetic energies per unit length in the y-direction,
in the region −L < x < L, with L≫ Rd, at early times and in the steady state. Comment
on the mechanism by which this system adjusts to steady state explaining why the total
energy in this region changes. Give an estimate, in terms of f , g, H0 and L, of the time
required for the energy in this region to reach its steady state value.
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2 Ocean circulation
(i) Sverdrup balance can be written

βv =W (x, y), (1)

where β = df/dy is the north/south gradient of the Coriolis acceleration, v is the velocity
in the northwards direction and W (x, y) is the curl of the surface wind stress. Describe
the assumptions required for Sverdrup balance to hold. Briefly (∼ 1-2 sentences) provide
a physical interpretation for Sverdrup balance.

(ii) Consider a rectangular ocean basin with boundaries at x = 0, x = LX , y = 0
and y = LY and the following wind stress curl,

W (y) = − sin (2πy/LY ) . (2)

Find the streamfunction, ψ, corresponding to Sverdrup flow in the interior of the ocean
basin. Sketch streamlines associated with the flow in Sverdrup balance, indicating the
direction of the circulation with arrows. In the presence of viscosity and applying the
no-slip boundary condition, there are viscous boundary layers at each boundary. For a
constant kinematic viscosity, ν, estimate the thickness of the viscous boundary layers on
all four horizontal boundaries of the ocean basin, using a scaling analysis or otherwise.

(iii) In the presence of a constant surface wind stress curl, W0 > 0, the shallow
water potential vorticity equation is

D

Dt

(
ζ + f

H

)
=
W0

H
, (3)

where ζ is the relative vorticity, H is the fluid depth, and D/Dt is the material derivative.
Consider a case where

H = y2, (4)

in the domain 0 ⩽ x ⩽ LX , −LY ⩽ y ⩽ LY and with constant f = f0. Assuming that
the Rossby number is small, obtain an expression for the streamfunction, ψ, associated
with steady flow and sketch the streamlines, indicating the direction of circulation using
arrows. Clearly state any additional assumptions that you make.

(iv) Consider water parcels that follow the streamlines that you found in part (iii)
for y > 0 and y < 0. Briefly (∼ 3-4 sentences) discuss the contributions to the potential
vorticity along these two paths.

Part III, Paper 333 [TURN OVER]



4

3 Mountain waves
(i) The quasi-geostrophic potential vorticity (QGPV) equation can be written

qt + ψxqy − ψyqx = 0, (1)

where subscripts denote partial derivatives, and the PV is given by

q = ψxx + ψyy +
f20
N2

ψzz + βy, (2)

where ψ is the streamfunction, f = f0 + βy is the Coriolis parameter, and N is the (con-
stant) background buoyancy frequency. State the assumptions that are required for the
QGPV equations to hold.

(ii) Consider a rotating stratified atmosphere that satisfies the QGPV equation and
is bounded from below by a flat rigid boundary located at z = 0. Linearising about a
state of rest, seek solutions for the perturbation streamfunction of the form

ψ′ = ℜ
(
ψ̂(z)ei(kx+ly−ωt)

)
, (3)

where ℜ(A) denotes the real part of A. Write the no normal flow boundary condition at
z = 0 in terms of deriviatives of the perturbation streamfunction, ψ′, and find the dis-
persion relation for small amplitude waves. Provide a brief interpretation for waves with
large and small horizontal wavelength (‘long’ and ‘short’ waves, respectively) and identify
the required condition for each of these limits to be valid.

(iii) Consider a basic state with a velocity u = U x̂ flowing over a sinusoidal mountain
range where the height of the ground is h = h0 cos(kx) and U , h0, and k are constant. Find
the dispersion relation for small amplitude waves generated by flow over the mountains that
satisfy the QGPV equation as written in part (i), where the perturbation streamfunction
has the form

ψ′ = ℜ
(
ψ̂(z)ei(kx+ly)

)
. (4)

Identify a condition that must be satisfied for the waves to propagate vertically.

(iv) For the same flow as described in part (iii), write the no normal flow boundary
condition on the perturbation streamfunction, ψ′, that is satisfied at z = h. In the case
where U > β/(k2 + l2) and the height of the mountain range is small enough to apply the
boundary condition at z = 0, find an expression for ψ̂(z). Briefly (1-2 sentences) comment
on the influence of the buoyancy frequency, N , on the amplitude and characteristic vertical
lengthscale of the waves.
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4 Wave mean-flow interaction/Equatorial waves
(i) Consider the x-averaged flow on the equatorial β-plane, with x-averages denoted

by (.) and with ‘eddy’ terms, i.e. the departure from the x-average, denoted by ′. The
equations for mean x-momentum, mass continuity of the meridional circulation and the
mean buoyancy, assuming a constant background buoyancy frequency N are respectively

ut − βyv = − ∂

∂y
(u′v′)− ∂

∂z
(u′w′), (1)

∂va
∂y

+
∂wa

∂z
= 0, (2)

σt +N2wa = − ∂

∂y
(v′σ′), (3)

with the terms on the right-hand side representing the effect of eddy forcing. (A second
term on the right-hand side of (3) has purposely been neglected.) u is the x-component of
the mean flow. (va, wa) are the y- and z- components of the mean meridional circulation
and σ is the mean buoyancy.

Show that a new meridional circulation (v∗a, w
∗
a), called the transformed Eulerian

mean circulation, may be defined so that all the eddy forcing terms appear on the right-
hand side of (1), in the form (∂/∂y)F (y) + (∂/∂z)F (z), with none on the right-hand side
of (3). Show explicitly the form of F (y) and F (z).

(ii) Assume that the eddy terms are governed by the equations for the motion of
a density-stratified fluid on an equatorial β-plane, under the Boussinesq and hydrostatic
approximations, and linearised about a state of rest:

u′t − βyv′ = −ϕ′x, (4)

v′t + βyu′ = −ϕ′y, (5)

u′x + v′y + w′
z = 0, (6)

σ′t +N2w′ = 0, (7)

ϕ′z = σ′, (8)

where u′ = (u, v, w) is the 3-dimensional velocity, σ′ is the buoyancy and ϕ′ is the pressure
perturbation divided by the constant background density. Consider plane wave solutions
of the form u′ = ℜ(û(y)ei(kx+mz−ωt)), with v̂(y), ŵ(y), σ̂(y) and ϕ̂(y) defined similarly
with respect to v′, w′, σ′ and ϕ′. All of these functions of y tend to zero as |y| → ∞. k,
m and ω are all assumed real, with ω > 0. [You may assume, without loss of generality,
that when it is non-zero the function v̂(y) is real.]

Show that these equations admit a Kelvin-wave solution with v̂(y) = 0 and that
the dispersion relation for this wave is ω = Nk/|m|. Include an explanation of why
ω = −Nk/|m| is not an acceptable form of the dispersion relation.

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 333 [TURN OVER]



6

Use the relation between û and ϕ̂ implied by the equations to show that for Kelvin
waves

u′w′ = −1
2

km

N2
|ϕ̂|2.

If upward propagating Kelvin waves are dissipated what is the sign of the force on the
mean flow?

(iii) Show that all equatorial waves have F (y) = 0 and F (z) ̸= 0 with

F (z) = 1
2

km

N2
|ϕ̂|2. (9)

[Hint: You do not need to find explicit solutions for functions such as v̂(y), but you should
state clearly any properties of such functions that you use.]

It may be assumed that, for all equatorial waves, upward group propagation implies
m < 0. Comment on the implications of (9) for the sign of the force exerted on the
mean flow by different types of equatorial waves that are generated in the troposphere,
propagate upwards and are dissipated in the stratosphere.

Comment also on the relation of (9) to the physical interpretation of F (z).

END OF PAPER
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