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1 An ice sheet of uniform temperature T = T−∞ < Tm calves (breaks off) into the
ocean to form a large iceberg. The ocean has uniform temperature T = Tm = 0◦C and
salinity C = C0. It can be assumed to have a linear liquidus temperature TL = Tm −mC,
where m is constant.

Draw a sketch of the one-dimensional temperature and salinity fields in the ice and
the ocean near a planar surface of the iceberg, assuming that heat and mass transfer
occur solely by conduction/diffusion. Write down the equations and boundary conditions
governing the temperature and salinity fields in the iceberg and in the ocean, writing the
position of the ice–ocean interface as x = a(t), where x is the direction normal to the
interface, pointing into the ocean. You may assume that the ice and ocean have equal
thermodynamic properties.

Explain why the position of the interface takes the form a(t) = 2λ
√
Dt, where D is

the diffusivity of salt. Write down (or derive if necessary) expressions for the temperature
and salinity fields. Use the interfacial conditions to determine a pair of equations to
determine the temperature Ti of the ice–ocean interface and the scale factor λ. [You may
like to use the function F (z) ≡

√
πzez

2
erfc z.]

Taking the limit ϵ ≡
√
D/κ ≪ 1, where D and κ are the diffusivities for salt and

heat, respectively, derive leading-order expressions for Ti and F (λ) in terms of Tm, T−∞,
m and C0. Under what conditions does ice grow (ȧ > 0) or ablate (ȧ < 0)? Sketch
the trajectory of (C, T ) in the phase diagram in each case, indicating when constitutional
supercooling might occur. What mechanism causes ablation in the latter case?

Note that

erf(z) =
2√
π

∫ z

0
e−y2 dy erfc(z) = 1− erf(z).
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2 Consider the injection of CO2 of density ρ−∆ρ at volumetric rate Q into a deep,
horizontal, saline aquifer of porosity ϕ and permeability k occupying 0 < z < H and filled
with a fluid of density ρ, where z measures distance vertically downwards. The aquifer is
bounded from above by a layer of impermeable rock of thickness b, which has a fracture
at horizontal position x = L, where x measures the distance from the point of injection.
The injected CO2 forms a long, thin gravity current of thickness h(x, t) ≪ H which flows
along the horizon z = 0 in the positive x-direction as a function of time t. At the fracture,
some CO2 leaks into the overlying strata at volumetric leakage rate

Ql = −W αk

µ

[
p(L, 0, t)− p(L,−b)

b

]
,

where W ≪ h is the width of the fracture, αk is the permeability of the fracture, p(L, 0, t)
is the pressure in the CO2 at the base (z = 0) of the fracture, p(L,−b) ≃ pH − ρgH is
the pressure above the impermeable layer and pH is a constant reference pressure deep in
the aquifer at depth z = H. Some CO2 continues to leak past the fracture, spreading to
distance xN (t) > L.

Draw a diagram of the aquifer and the spreading CO2, taking care to label the
dimensions and physical properties of the aquifer, CO2 current and fracture.

The current of CO2 is long and thin, and the pressure within the current is therefore
hydrostatic. Briefly derive a model for the gravity current of CO2, paying particular
attention to the flux conditions at the fracture.

At late times, when xN ≫ L, a steady state balance is achieved for 0 < x < L in
which the flux Q into the aquifer is approximately equal to the leakage flux Ql. Find an
expression for the height of the steady current written solely in terms of h0 = h(x = 0),
hL = h(x = L), and x/L, and find expressions for hL and h0 in terms of the external
parameters of the system.

Finally, consider the spreading of the current into the far field (x > L) from the
fracture, where hL ≈ constant. Use a scaling analysis to show how the extent of the
current, xN , depends on time and formulate a self-similar problem which would be solved
to completely describe xN (t). You do not need to solve this self-similar problem.
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3 A grounded ice sheet of density ρ, treated as a Newtonian fluid of dynamic viscosity
µ, slides on a horizontal layer of till, which lubricates the sheet sufficiently that resistance
to internal deformation derives dominantly from extensional stresses, with respect to which
internal shear stresses are negligible. Such a so-called shelfy stream acts like a floating ice
shelf except that there is a basal stress

τb = µ
u

λ

resisting the motion, where u is the vertically uniform, quasi-horizontal velocity of the ice
sheet and λ is a physical parameter characterising the till. Draw a sketch of the physical
setup. How might λ be related to the thickness of the layer of till and its viscosity? What
are its dimensions?

By considering force balances on a section of the ice sheet between x and x + δx,
where x measures downstream distance from the grounding line, derive the momentum
equation

4µ
∂

∂x

(
h
∂u

∂x

)
− ρgh

∂h

∂x
− µ

u

λ
= 0,

where h is the thickness of the ice, giving careful explanations of each stage of your
derivation. Write down the corresponding equation describing an ice shelf floating on an
ocean of density ρw, into which the shelfy stream flows across a grounding line located at
x = 0.

Similarly, derive an equation describing local conservation of mass, integrated
through the depth of the ice sheet or shelf.

Show that, in regions where thin-film theory is valid, the extensional stresses in the
stream are negligible in comparison with the basal friction provided λ≪ hG, where hG is
the thickness of the ice at the grounding line. In such a case, with constant volumetric
flux per unit width q, and with the base of the stream a uniform depth b below sea level,
find the steady state ice thickness in the form

h = hG

(
1− x

δ

)α
,

where hG, δ and α should be determined/defined in terms of the physical parameters
given above. By considering the surface slope of the stream at the grounding line, find
a condition on λ that ensures the validity of thin-film theory for the solution just found.
Show that both conditions on λ can be met provided that

µq

ρgh3G
≪ 1.

From the equations and boundary conditions governing the evolution of the shelf, show
that the depth-integrated horizontal force exerted by the shelf on the stream is equal to
the hydrostatic force of the ocean at the grounding line. Assuming that the full horizontal
force in the shelfy stream (including extensional stresses) can be determined to leading
order from the approximate solution just found, determine a relationship between q and
hG.

[Note, for information only, that if q and hG are slowly varying with x then the
solution found above can be used to relate conditions at the grounding line, and therefore
q(hG) can be used to determine the position of the grounding line.]
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4 Observations of a floating ice sheet depict a series of corrugations on the underside
of the ice shelf of wavelength λ ≪ H which form at the grounding zone, where H is the
thickness of the floating ice. Consider the relaxation of the corrugations as a function of
time. You should neglect the advection of the ice shelf away from the grounding line, and
any large-scale internal thinning, instead focusing on the evolution of the corrugations.

To do so, consider a two-dimensional model of the viscous relaxation of the ice. You
should treat the ice as having Newtonian viscosity µ and density ρ, floating on water of
negligible viscosity and density ρw. The corrugations have the complex representation

z = η(x, t) = η̂eikx+σt,

with amplitude η̂ ≪ λ = 2π/k, where k is the wavenumber and σ is the decay rate of the
corrugations in time t.

Draw a sketch of the problem, taking care to label the corrugations, ice thickness
and coordinate axes. Inertia of the ice is negligible, so flow is determined by the Stokes
equation. You should then express the velocity within the ice in terms of a streamfunction,
u = ∇×ψŷ. Take the curl of the Stokes equation and show that, by applying appropriate
far field boundary conditions, the streamfunction is given by

ψ = (A+Bz)e−kzeikx+σt,

for constants A and B. Solve for the velocity components and pressure.

At the corrugated ice-ocean boundary, the ocean exerts zero shear stress on the ice,
and the normal stress is hydrostatic. Since the perturbations to the interface are small,
linearise these two boundary conditions about the unperturbed interface (z = 0) and solve
for the constants A and B. Finally, write down a kinematic condition for the evolution of
η, and so determine the growth or decay rate of corrugations.

Express your answer as the timescale τ(λ) for corrugations of wavelength λ to decay,
and interpret your results physically. What do you expect observations to show far from
the grounding line when the ice has been advected down the length of the ice shelf?
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Part III, Paper 332


