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1 (a) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow. Explaining your choice of trial harmonic potentials, determine the velocity
field due to a rigid sphere of radius a moving with velocity U+Ω∧x through unbounded
fluid of viscosity µ that is otherwise at rest. Determine also the stress field σ when U = 0.

[You may assume below that σ = − 3µ

2a2
{
Ux+ xU+ (U · x)(I− 2xx/a2)

}
on r = a when

Ω = 0.]

(b) A force-free couple-free spherical micro-organism of radius a swims through fluid
of the same density by using a surface layer of tiny flagella to prescribe a relative velocity
us(x) between the fluid just outside the organism and the rigid body of the organism.
Hence if the velocity of the organism is V+ω∧x, with V and ω constants, then the fluid
velocity immediately outside the organism is V + ω ∧ x+ us(x).

State the reciprocal theorem for Stokes flow for the case of zero body force. Use the
theorem to determine V and ω as integrals of us(x). Evaluate V and ω for the case

us(x) = (A ∧ x) ∧ x/a2 + (B · x)2B ∧ x/a3 , (∗)

where A and B are constant vectors (true and pseudo, respectively).

[You may use

∫
r=a

xixjxkxl dS =
4πa6

15

(
δijδkl + δikδjl + δilδjk

)
.]

(c) Suppose that B = 0 in (∗). Using some of your answer to part (a), or otherwise,
and noting the force-free condition on the micro-organism, write down the form of the
external velocity field u(x) in r > a. Verify that, with a suitable choice of the multiplicative
constant, it satisfies the kinematic boundary condition.

Suppose, instead, that A = 0 in (∗). Write down the form of a harmonic potential
for the external velocity field. [You do not need to find the multiplicative constant.] How
rapidly does the external velocity decay as r increases?
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2 (a) An axisymmetric thread of viscous fluid falls vertically from a nozzle through
air of negligible viscosity and constant pressure pe. The thread has cross-sectional area
A(z, t) = πa2, where |∂a/∂z| ≪ 1. Inertia and surface tension are negligible. Derive the
equations governing the cross-sectional area A and the vertical velocity w, explaining your
argument carefully.

Consider steady flow with constant flux. Let W = w/ŵ and Z = z/ẑ, where ŵ is a
given velocity scale and ẑ is a vertical scale to be chosen. Find the choice of ẑ that makes
the momentum equation as simple as possible. Using an integrating factor, or otherwise,
show that W (Z) then satisfies the first-order equation

1
2W

′2 = CW 2 +W ,

where C is a constant of integration.

Solve this equation subject to W → 0 as Z → 0+ for each of the cases (i) C = 0,
(ii) C = 1

2 , (iii) C = −1
2 . The nozzle is at Z = Z0, where Z0 is a small positive number.

Sketch the form of A(Z) for Z > Z0 for each of the three cases, and describe the physical
difference between the three situations in terms of the vertical stress.

(b) To manufacture very thin glass sheets, a long thin ribbon of molten glass is
stretched by passing it between two pairs of rollers, with the second pair being rotated
faster than the first so that the ribbon must speed up and thin by mass conservation.
Model this as follows:

Let the rollers be at z = 0 and z = L, and assume that the ribbon has a rectangular
cross-section −h ⩽ x ⩽ h, −b ⩽ y ⩽ b, where h(z) ≪ b(z) ≪ L. Inertia and gravity
are negligible, but surface tension γ acts at the edges ±b of the sheet, rounding them
into approximately semi-circular shapes of radius h. As in part (a), the fluid has constant
viscosity, the surroundings have negligible viscosity and constant pressure pe, and the axial
velocity w(z) is uniform in a cross-section.

Use the dynamic boundary conditions and lateral force balance to show that

σzz = −pe −
γ

2h
+ 3µ

dw

dz
.

[Hint: σxx and σyy are each uniform, but different.] Show also from the kinematic
boundary condition that

w
db

dz
+

b

2

dw

dz
+

γb

4µh
= 0 . (1)

You are given that in steady flow

hbw = Q , 3µhb
dw

dz
+

γb

2
= F . (2, 3)

Describe the physical meaning of these equations. Deduce from (1)–(3) that w and b obey

b′

b
+

1

2

w′

w
= −Γb

4
,

3w′

w
= −Γb

2
+ T ,

where the constants Γ and T should be determined. What are their dimensions? Show
that w ∝ b exp(Tz/2) and solve the remaining equation for 1/b subject to b(0) = b0.

For the case Γ = 0, find the value of F that results in a prescribed amount of
thinning h(L)/h(0).
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3 A rigid cylinder of radius a falls through viscous fluid with its axis horizontal and
parallel to a rigid vertical wall. With respect to suitably chosen coordinates (x, y), the
wall lies along y = 0 and has velocity (−U, 0), the axis of the cylinder is at

(
0, (1 + 1

2ϵ)a
)

and is stationary, the cylinder rotates about its axis with angular velocity Ω, and the fluid
occupies the region outside the cylinder in y > 0. Assume throughout that 0 < ϵ ≪ 1.

Use the lubrication approximation to determine the flow in the thin gap between
the cylinder and the wall. Show that the flux q through the gap is 1

3ϵa(Ωa−U) (per unit
axial length of cylinder).[
You may assume that if In ≡

∫ ∞

−∞

dξ

(1 + ξ2)n
then I1 = π, I2 =

π

2
and I3 =

3π

8
.
]

Show also that
σxy
µ

∣∣∣
y=0

=
4U − 2Ωa

h
+

6q

h2
,

where h(x) is the gap width, and find a similar expression for σxy on y = h. Hence
calculate the tangential force (per unit length of cylinder) that is exerted by the shear
stress in the thin gap (i) on the wall and (ii) on the cylinder. Why are these forces not
equal and opposite?

The cylinder has a uniform density ∆ρ greater than that of the fluid. What is the
force and couple on the cylinder? Use your answers to (i) and (ii) to find U and to show
that Ω = 0 at leading order.

For Ω = 0, sketch, as functions of x, the pressure p(x) and the shear stress σxy(x, h)
on the cylinder. [You need not find p explicitly.] Identify the two points where the shear
stress vanishes on the cylinder. Sketch the streamlines of the flow in the thin gap.

Now consider a two-dimensional Couette flow with rigid walls at y = ±(1 + 1
2ϵ)a

which have velocity (±U, 0). A force-free couple-free rigid cylinder of radius a is introduced
perpendicular to the flow with its axis initially located at (0, 12λϵa), where −1 < λ < 1.
Adapt your previous results to deduce the approximate speed V of the cylinder. For λ = 0
sketch the streamlines on either side of the cylinder, and explain why its angular velocity
is O(ϵ1/2U/a).

END OF PAPER
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