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1 Variational regularisation
Suppose that X ,Y are Banach spaces, that X is reflexive, and that we have a

bounded linear forward operator A : X → Y mapping images u to measurements f . In
the lectures, we studied optimisation problems of the following form to obtain approximate
solutions to the corresponding inverse problem:

ûα ∈ argmin
u∈X

1

2
∥Au− f∥2Y + αJ (u), (1)

for measurements f , and with J : X → R ∪ {∞} a proper, convex, lower semicontinuous
regularisation functional that is bounded from below, and such that the objective function
in (1) is coercive.

(a) Explain why existence of solutions to (1) is guaranteed under the stated conditions.

(b) Given f ∈ Y and u† ∈ X , state what it means for u† to be a J -minimising solution
to the inverse problem Au = f . Given such a u†, state what it means for u† to satisfy
the source condition.

(c) Let us now consider a modification of the standard variational problem (1), given as
follows:

ûα ∈ argmin
u∈X

∥Au− f∥Y + αJ (u). (2)

Suppose further that there is a J -minimising solution u† satisfying the source
condition.
Calculate an 0 < α0 ⩽ ∞, depending on the element in the source condition, such
that any solution ûα to (2) is a J -minimising solution for 0 < α < α0. If additionally
J is strictly convex, conclude that the solution ûα to (2) coincides exactly with u† for
0 < α < α0.
Hint: use that ûα satisfies (2) and compare to an appropriate other element of X .

(d) Of course, in practical settings, we do not have access to the clean measurements f
and instead have to make do with noisy measurements fδ, which we assume satisfy
∥f − fδ∥Y ⩽ δ. In this case, (2) is modified to use fδ:

ûα,δ ∈ argmin
u∈X

∥Au− fδ∥Y + αJ (u). (3)

We will continue to assume that there is a J -minimising solution u† satisfying the
source condition.
Recall the definition of the Bregman divergence of a convex functional and show the
following bound on the Bregman divergence of J (with p† the specific subgradient
from the definition of the source condition)

Dp†

J (ûα,δ, u
†) ⩽ Cαδ,

for any α satisfying the same constraints 0 < α < α0 as in the previous step. Here
Cα ⩾ 0 depends on α (and on the element in the source condition) but not on δ.
Comment: with this formulation, the inequality above shows that we do not need to let
α converge to 0 as δ → 0 to get convergence in the Bregman divergence, unlike in the
results in the lectures!

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Under the same assumptions, we can consider a different but related approach to
variational regularisation through constrained optimisation. We will let c ⩾ 1 be
arbitrary and solve the following problem to get an approximate inverse:

ûδ ∈ argmin
u∈Eδ

J (u), where Eδ := {u ∈ X |∥Au− fδ∥Y ⩽ cδ}. (4)

Explain why solutions to (4) exist, using a similar reasoning as in (a). Under the
source condition, as above, prove the following bound on the Bregman divergence:

Dp†

J (ûδ, u
†) ⩽ Cδ

for some C ⩾ 0 only depending on c and the element in the source condition.
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2 Bayesian inverse problems
Suppose that X = L2[0, 1]. In what follows, when we speak of measures on X ,

we will always mean that they are defined on the measurable space (X ,B(X )). We will
further assume the existence of an underlying probability space (Ω,F ,P) on which we have
a sequence {ξi}∞i=0 of independent standard Gaussian random variables. We are given a
problem in which an initial condition u ∈ X is diffused according to the heat equation

∂v
∂t (x, t) =

∂2v
∂x2 (x, t) on [0, 1]×R⩾0

∂v
∂x(x, t) = 0, on {0, 1} ×R>0,

v(x, 0) = u(x) on [0, 1],

and we have N ⩾ 1 uniformly spaced sensors at xi := (i + 1)/(N + 2) ∈ (0, 1) for
i = 1, . . . , N . With these sensors, we can take noisy measurements of point evaluations
{vi}Ni=1 := {v(xi, 1)}Ni=1, and let us write G : X → RN for the map u 7→ {v(xi, 1)}Ni=1.
You may use without proof that for any t > 0, u 7→ v(·, t) is a continuous map from
L2[0, 1] → C[0, 1] (in particular, point evaluations of v are well defined for t > 0). We will
consider the inverse problem of recovering u from {ṽi}Ni=1, a noisy version of {vi}Ni=1 and
frame it as a Bayesian inverse problem.

(a) Consider the integral operator K defined by

Kf(x) =

∫ 1

0
exp(−|x− y|)f(y) dy.

Show that K is a self-adjoint, bounded linear operator X → X .

(b) Show that the eigenvalues λ of K satisfy the equation

2ω

ω2 − 1
= tan(ω), (1)

where −ω2 = (λ− 2)/λ.
Hint: The eigendecomposition can be found by solving an integral equation. Derive an
equivalent ODE with boundary conditions and study its solutions.

(c) Without explicitly solving the transcendental equation (1), show that the correspond-
ing eigenvalues satisfy λn > 0 and λn = O(1/n2) as n → ∞.

(d) In fact, K is compact (you do not need to prove this).
Using the results above, conclude that K can be used as the covariance operator of a
Gaussian random field: how would you construct a random variable taking values in
X , the law of which is the measure N(m,K)? You may use results from the lectures
without proof as long as they are clearly stated.

(e) We will model the initial condition as a random variable U : (X ,B(X )) → (R,B(R)),
taking the prior measure to be µ0 = P(U ∈ ·) := N(m,K) for some m ∈ L2[0, 1],
and we will model the noisy measurements as a random variable V : (X ,B(X )) →
(RN ,B(RN )) with conditional law P(V ∈ ·|U = u) = N(G(u), σ2 idRN ) for some
σ > 0 representing the noise level.
What is the corresponding likelihood? State the Bayesian inverse problem of recover-
ing U from V .

[QUESTION CONTINUES ON THE NEXT PAGE]
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(f) Recall the definition of the total variation distance, dTV(µ, ν), between two probability
measures µ, ν ∈ Prob(X ,B(X )). What does it mean for the Bayesian inverse problem
to be (Prob(X ,B(X )), dTV)-well-posed? Show that the Bayesian inverse problem
defined in (c) is well-posed in this sense. You may use results from the lectures
without proof as long as they are clearly stated.
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3 Classical regularisation
We will consider a linear inverse problem with forward operator A : X → Y between

infinite-dimensional Hilbert spaces X and Y:

Estimate u from f where Au = f. (1)

We will further assume that A is a compact operator with infinite-dimensional range im(A).

(a) What does it mean for the inverse problem, (1), to be well-posed in the sense of
Hadamard? Given the assumptions on A, why is the inverse problem always ill-posed?

(b) Given a bounded linear operator K : X → X , prove that

(idX −K)−1 =

∞∑
n=0

Kn, (2)

if ∥K∥L(X ,X ) < 1, where the series converges with respect to the operator norm. As a
consequence, show that, if τ ̸= 0 and ∥ idX −τK∥L(X ,X ) < 1, then

K−1 = τ
∞∑
n=0

(idX −τK)n. (3)

(c) Recall the normal equation associated with (1). Under what conditions does the
normal equation have solutions, and under what conditions are these solutions unique?
How do the solutions of the normal equation relate to the Moore–Penrose inverse?

(d) It is tempting to try to apply (3) with K = A∗A to solve the normal equation. Why
is this not possible, even if ker(A) = {0}?
Hint: apply the spectral theorem to A∗A to show that the conditions we assumed to
derive (3) are not satisfied.

(e) Despite the negative result in (d), the series in (3) can be used to compute solutions
to the normal equation when they exist:
Recall the domain, dom(A†), of the Moore–Penrose inverse and show that if f ∈
dom(A†) and τ is chosen so that 0 < τ < 1/∥A∥2L(X ,Y), then

QNf = τ

N∑
n=0

(idX −τA∗A)nA∗f → A†f, (4)

as N → ∞.
Hint: it may be useful to recall the Picard criterion.

(f) Show that the series in (4) can be used to define a convergent regularisation of
the inverse problem (1), i.e., show that there is an a-priori parameter choice rule
α : R>0 → R>0 and a regularisation {Rα}α>0 defined using this series such that the
pair ({Rα}α>0, α) is a convergent regularisation. You may use a result proven in the
lectures, provided you state it clearly.
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