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1 (a) Explain carefully what is meant by the reduced density matrix of a subsystem
of a bipartite quantum system.

(b) Give a model of a N -dimensional quantum system S undergoing a unitary
interaction with an apparatus A designed to measure an observable B of S, where B has
N distinct eigenvalues {λi}Ni=1 with corresponding eigenvectors {|ei⟩} and the apparatus
Hilbert space includes “pointer states” |i⟩ corresponding to the observation of λi. If the
system is initially in state |ϕ⟩ =

∑
i ai|ei⟩, what is its reduced density matrix after the

interaction?

Consider the observable Pij = |ψij⟩⟨ψij |, where |ψij⟩ = 1√
2
(|ei⟩+ |ej⟩), for some i, j

with i ̸= j. What is the probability of obtaining outcome 1 if Pij is measured on the system
before the interaction with the apparatus? What is the probability of obtaining outcome
1 if Pij is measured on the system after the interaction with the apparatus? Comment on
what this calculation explains, and on a fundamental feature of quantum theory that it
does not explain.

(c) State the Einstein-Podolsky-Rosen (EPR) criterion for an element of physical
reality. By considering measurements on the state of three entangled spin-12 particles

|ψGHZ⟩ =
1√
2
(|↑↑↑⟩ − |↓↓↓⟩) ,

show that the EPR criterion contradicts the predictions of quantum theory.
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2 Consider the following hypothetical devices that could be realised by physics beyond
quantum theory:

(a) A device comprising two separated boxes, labelled A and B, each of which
accepts a classical input bit, 0 or 1. Each box, on receiving a valid input, instantly
outputs a classical bit. The outputs depend probabilistically on the inputs, with the
following conditional probabilities:

p(00|00) = p(11|00) = 1

2
, p(00|01) = p(11|01) = 1

2
,

p(00|10) = p(11|10) = 1

2
, p(10|11) = p(01|11) = 1

2
.

(b) A device comprising two separated boxes, labelled A and B, each of which accepts
a classical input bit, 0 or 1. Each box, on receiving a valid input, instantly outputs a qubit.
The qubit outputs depend probabilistically on the inputs, with the following conditional
probabilities:

p(|+⟩ |+⟩ |00) = p(|−⟩ |−⟩ |00) = 1

2
, p(|+⟩ |+⟩ |01) = p(|−⟩ |−⟩ |01) = 1

2
,

p(|+⟩ |+⟩ |10) = p(|−⟩ |−⟩ |10) = 1

2
, p(|0⟩ |0⟩ |11) = p(|1⟩ |1⟩ |11) = 1

2
.

Here |0⟩ , |1⟩ are orthonormal and |±⟩ = 1√
2
(|0⟩ ± |1⟩).

(c) A device comprising two separated boxes, labelled A and B, each of which accepts
as input a bit, 0 or 1, together with any pure state qubit |ψX⟩ (where X = A or B). Each
box, on receiving a valid input, instantly outputs a classical description of a qubit, which
is either an infinite precision classical description of |ψX⟩, which we write as c(ψX), or an
infinite precision classical description of the orthogonal qubit, c(ψ⊥

X). These descriptions
involve specified orthonormal basis states |0⟩ and |1⟩ and use the phase convention that
|ψX⟩ = α |0⟩ + β |1⟩ with α real, and with β = 1 if α = 0; similarly |ψ⊥

X⟩ = γ |0⟩ + δ |1⟩
with γ real and with δ = 1 if γ = 0. For the purpose of this question we assume that it
is physically possible to produce infinite precision outputs instantly. The outputs depend
probabilistically on the inputs, with the following conditional probabilities:

p(c(ψA)c(ψB)|00) = p(c(ψ⊥
A)c(ψ

⊥
B)|00) =

1

2
,

p(c(ψA)c(ψB)|01) = p(c(ψ⊥
A)c(ψ

⊥
B)|01) =

1

2
,

p(c(ψA)c(ψB)|10) = p(c(ψ⊥
A)c(ψ

⊥
B)|10) =

1

2
,

p(c(ψA)c(ψ
⊥
B)|11) = p(c(ψ⊥

A)c(ψB)|11) =
1

2
.

(In each case, (a), (b) and (c), all probabilities not explicitly mentioned are zero.)

In each case, explain whether or not the device necessarily allows superluminal
signalling, justifying your answers carefully. In case (c), your justification should include
a discussion of the possible outputs when one or both boxes are given entangled qubits as
inputs.
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3 Write down the Schrödinger equation for two mass m particles interacting gravita-
tionally. You may assume here, and throughout this question, that all other forces (includ-
ing external gravitational fields) are negligible. Describe how the state evolves from an
initial state in which particle i is in a superposition state of the form 1√

3
(ψ0i +ψ1i +ψ2i),

where ψai is localised around horizontal position xai for i = 1, 2, assuming that the ψai

remain localized around their respective horizontal positions throughout the evolution.

Suppose now that the separations |xa1 − xa2| = d are small and identical, while the
other separations are sufficiently large that the gravitational potential between the masses
in these locations is relatively negligible, and that the particles maintain all these relative
separations throughout. By calculating the reduced density matrix of one particle, or
otherwise, show that the system reaches a maximally entangled state. If m = 10−14kg
and d = 2× 10−4m, estimate (to within 20%) when it reaches that state.

Does the system remain entangled for all times t > 0? Justify your answer.

(You may take Newton’s gravitational constant G = 6.7 × 10−11 m3 kg−1 s−2 and
Planck’s constant h = 6.6× 10−34 m2kg s−1, with ℏ = h/2π.)

4 Consider the following thought experiment. Alice has a particle of mass mA that
is either (a) in a superposition |ψ⟩ = 1√

2
(|L⟩+ |R⟩) or (b) an equal mixture of the states

|L⟩ and |R⟩, which are well localized around the origin and the point (d, 0, 0) respectively.
Bob is in a laboratory at location (R, 0, 0), where R ≫ d > 0. His laboratory contains
a test particle of mass mB in the ground state of a very narrow harmonic trap, localized
to within ∆X ≈ lP , where lP = (ℏG/c3)1/2 is the Planck length. (You may assume this
localization is possible and the minimum possible.) At t = 0 Bob either opens the trap,
releasing the particle, or keeps it closed.

Describe the approximate behaviour of the joint system of Alice’s and Bob’s particles
if the trap is opened, and give an estimate for the time after which they become entangled.
You may assume that Ehrenfest’s theorem applies to Bob’s particle, that Alice’s particle is
negligibly displaced by the Newtonian gravitational interaction, and that no other forces
are relevant.

Hence show that any experiment that allows Alice to distinguish between cases (a)
and (b) must take at least time of order (i.e. up to numerical factors) TA ≈ (mA/mP )(d/c),
where mP = (ℏc/G)1/2 is the Planck mass.
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