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(a) Consider any finite group G with identity element e, and any set X. An action
of G on X is a map F : G ×X → X that associates a function F (g, ·) : X → X to each
group element g. In particular, F associates the identity function x 7→ x with e, and for
any pair of group elements g, h ∈ G it holds that F (gh, x) = F (g, F (h, x)). Consider the
set StabF (x) = {g ∈ G | F (g, x) = x} of stabilisers of x under the action F .

(i) Show that StabF (x) is a subgroup of G for any fixed x ∈ X.

(ii) Fix x ∈ X and suppose you are given a function fx : G → X such that
fx(g) = F (g, x) for each g ∈ G. Explain how the problem of determining StabF (x)
from an oracle for fx can be formulated as a Hidden Subgroup Problem for G.

(b) Now fix a positive integer N and consider the group action of ZN on the set
X = {0 < x < N | gcd(x,N) = 1}, defined by F (z, x) ≡ xz mod N for each z ∈ ZN

and x ∈ X. Let HN be an N -dimensional state space with standard orthonormal basis
B = {|0⟩, |1⟩, . . . , |N − 1⟩}. For each x ∈ X, let Ux denote the operator on HN defined by
|y⟩ 7→ |xy mod N⟩ for all y ∈ ZN .

(i) Prove that Ux is unitary.

(ii) Fix an element a ∈ X and let 1 ⩽ r < N be the smallest value such that ar ≡ 1
mod N . Show that the states

|ψs⟩ :=
1√
r

r−1∑
k=0

e−2πisk/r |F (k, a)⟩

are eigenvectors of Ua for each 0 ⩽ s < r, and compute the corresponding eigenvalues.

(iii) Prove that 1√
r

∑r−1
s=0 |ψs⟩ = |1⟩.

(iv) Given a copy of the state |1⟩, outline a procedure using the quantum phase estimation
algorithm to output (with constant probability) an m-bit approximation to s/r for
a value of 0 ⩽ s < r drawn uniformly at random. You may quote and use results
about quantum phase estimation without proof.
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(i) Consider a linear system of equations Ax = b with x, b ∈ CN and A Hermitian.
State the conditions required on A and b for the Harrow-Hassidim-Lloyd (HHL)
quantum algorithm to run in time O(poly logN) and output a normalised state |ξ⟩
that is proportional to the solution vector x, with high probability (ignoring issues
of precision).

(ii) Suppose U is an implementation of the HHL algorithm in the following sense: on
the N -dimensional Hilbert space H, the unitary U performs the map

U |b⟩ = p|ξ⟩+ q|ϕ⟩ ,

where p, q ∈ (0, 1), |b⟩ is the normalised quantum state corresponding to the vector
b in the definition of the linear system, |ξ⟩ is as defined above in (i), and |ϕ⟩ is a
normalised state in H that is orthogonal to |ξ⟩. Defining the necessary operators,
state the Amplitude Amplification Theorem as it applies to the target state |ξ⟩.

(iii) Suppose the value of p is known. Explain how the state |ξ⟩ can be prepared exactly
using Amplitude Amplification. You may use ancillary qubits if necessary, and
assume that arbitrary single-qubit states may be prepared efficiently.

(iv) For any z ∈ (0, 2π), suppose we can implement a unitary R(ξ, z) with the action

R(ξ, z)|ξ⟩ = eiz|ξ⟩ ,
R(ξ, z)|ψ⟩ = |ψ⟩ if ⟨ξ|ψ⟩ = 0 .

Consider the transformation

G = U [(1− eiz)|b⟩⟨b| − I]U †R(ξ, z) ,

where I is the identity operation on H. Under what condition on p and q is it
possible to choose z such that G can be used to prepare |ξ⟩ exactly with certainty?
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3 (a) Consider the additive group of integers modulo Q for some fixed integer Q > 1.
Let 2m−1 < Q < 2m, and view HQ as a subspace of the m-qubit state space, spanned by
|a⟩ with 0 ⩽ a ⩽ Q−1. Assume that for any value of ϕ ∈ [0, 2π), we can implement phase
gates of the form

P (ϕ) =

(
1 0
0 eiϕ

)
,

as well as all corresponding 2-qubit controlled phase gates CP (ϕ).

(i) Write down the action of the Quantum Fourier Transform QFTQ over HQ on a basis
state |a⟩.

(ii) Suppose the Boolean function on m-bits that outputs 1 if and only if the integer
represented by the bit string x is smaller than Q, can be computed efficiently by
a classical computer. Explain how the state |ξ⟩ = 1√

Q

∑Q−1
b=0 |b⟩ may be prepared

efficiently with success probability at least 1−δ for any δ > 0 on a quantum computer,
starting from the m-qubit all-zeros state |0m⟩.

(iii) Write down a circuit consisting of O(m) many 1- and 2-qubit gates for the unitary
U that maps any |b⟩ to ωb|b⟩ for each 0 ⩽ b ⩽ Q− 1. Hence or otherwise write down
a circuit of O(m2) many 1- and 2-qubit gates for the unitary V : |a⟩|b⟩ 7→ ωab|a⟩|b⟩.

(iv) Using your answers to parts (i)-(iii), describe how the mapping |a⟩|0m⟩ 7→ |a⟩QFTQ|a⟩
may be implemented for any 0 ⩽ a ⩽ Q− 1.

(b) Consider the shift operator S that acts as S|x⟩ = |(x−1) mod Q⟩ on HQ. Using
the unitary part UPE of the quantum phase estimation algorithm, describe a procedure to
implement the map |0m⟩QFTQ|a⟩ 7→ |a⟩QFTQ|a⟩. You may ignore issues of precision and
assume that UPE can be implemented exactly.

(c) Using your answers to parts (a)-(b), describe a procedure to prepare the state

QFTQ

(
|a⟩+|b⟩√

2

)
for any 0 ⩽ a < b ⩽ Q− 1. You may assume that the initial state |a⟩+|b⟩√

2

can be prepared efficiently, and use ancillary registers where necessary.
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Let I,X,Z denote the identity and standard single-qubit Pauli operators. Let P1 be
the set of operators {I,X,Z,XZ} and their multiples by ±1 and ±i, and let Pn = P⊗n

1 .
Any unitary on n qubits that preserves the group Pn under conjugation is called a Clifford
operation. You may assume that any n-qubit Clifford operation may be represented by a
circuit of {H,CZ, S} gates, where CZ is the two-qubit controlled-Z gate and S2 = Z.

(a) Consider the quantum computational process that starts with an initial n-
qubit state |ψ⟩ and applies a poly(n) sized circuit of 1- and 2-qubit gates, followed by
a measurement of a single specified output qubit in the computational basis.

(i) Define what it means for the output of a quantum computational process as described
above to be classically strongly efficiently simulatable.

(ii) Suppose the input is a product of n single qubit states, |ψ⟩ = |α1⟩⊗|α2⟩⊗ . . .⊗|αn⟩.
Given a classical description of this input state and an n-qubit Clifford operation C as
a circuit UNUN−1 . . . U1 of length N = poly(n), show that the outcome of measuring
a single output qubit of C|ψ⟩ in the computational basis can be classically strongly
efficiently simulated.

(b) Consider the circuit shown in Eq. (1) below, where |ψ⟩ is an arbitrary single-
qubit state and |Aθ⟩ = 1√

2

(
|0⟩+ eiθ |1⟩

)
. Show that the state of the first qubit at the end of

the circuit is either P (θ) |ψ⟩ or P (−θ) |ψ⟩ with equal probability, where P (ϕ) =

(
1 0
0 eiϕ

)
is the phase gate.

|ψ⟩ |ψ′⟩

|Aθ⟩ X

|0⟩ X X b ∈ {0, 1}

(1)
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