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1 Let us consider the setting of hypothesis testing in scenarios where the hypotheses
are given by quantum channels. For finite-dimensional Hilbert spaces H,K and a linear
map T : B(H) → B(K), we define the following norms:

∥T∥1 := sup{∥T (X)∥1 | ∥X∥1 ⩽ 1} ,
∥T∥⋄ := sup

n∈N
{∥T ⊗ idn∥1} ,

with idn : Cn×n → Cn×n the identity map.

(i) Given two quantum channels T1, T2, write down the problem of symmetrically
discriminating between both of them, by considering the action of both channels
on the same state. Define both error types, as in the case of discrimination of
quantum states. [5]

(ii) Assume that T1, T2 are given with a priori probabilities p and 1 − p, respectively,
with p ∈ [0, 1]. Using the Quantum Neyman-Pearson for the optimal error
in symmetric discrimination of states (or the Holevo-Helmstrom for the optimal
probability of success), write an explicit expression for the optimal error in symmetric
discrimination of T1, T2, using arbitrary ancillas (by taking the supremum over the
evaluation of the combination of channels in all possible states). How would this
transform if no ancilla was used? [5]

(iii) Consider the Werner-Holevo channels: T+, T− : B(Cd) → B(Cd) given by

T±(ρ) :=
1

d± 1
(Tr[ρ]1± ρT ) ,

where ρT is the transpose of ρ. Set the a priori probability for T+ to be p = d+1
2d .

Then, show that

∥pT+ − (1− p)T−∥⋄ = 1 ,

∥pT+ − (1− p)T−∥1 =
1

d
,

using that the ⋄ norm of the transposition map is d. Interpret this in terms of the
difference between using an ancilla or not for discrimination. [10]
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2 Here, we will explore separability/entanglement of quantum states. Consider a
bipartite Hilbert space HAB = HA ⊗HB and an arbitrary density matrix ρAB ∈ S(HAB).

(i) What is the definition of ρAB being separable or entangled? [4]

(ii) What does the PPT criterion state about entanglement? For which dimensions does
it provide a necessary and sufficient condition? [4]

(iii) Given d ∈ N, consider z ∈ {1,−1, i,−i}d. Denote

|z⟩ = 1√
d

d∑
j=1

zj |j⟩ .

Then, show that

σ :=
1

4d

∑
z

|z⟩⟨z| ⊗ |z∗⟩⟨z∗| = 1

4dd2

∑
j,k,j′,k′

(∑
z

zjz
∗
kz

∗
j′zk′ |j⟩⟨k| ⊗

∣∣j′〉〈k′∣∣) . [3]

(iv) Consider the maximally entangled state given by∣∣Φ+
〉
=

1√
d
(|11⟩+ . . .+ |dd⟩) ,

and define the following two qudit isotropic state ρp ∈ Cd2×d2 :

ρp = p
∣∣Φ+

〉〈
Φ+
∣∣+ (1− p)

1

d2
.

Show that |Φ+⟩⟨Φ+| can be expressed in terms of σ as

∣∣Φ+
〉〈
Φ+
∣∣ = dσ − 1

d
+

1

d

d∑
j=1

|j⟩⟨j| ⊗ |j⟩⟨j| . [4]

(v) Show that ρp is separable for p ⩽ 1
1+d and entangled for p > 1

1+d . [5]
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In this problem, we will prove that the data-processing inequality of the Umegaki
relative entropy under quantum channels is equivalent to the property of strong subaddit-
ivity of the von Neumann entropy. For HABC = HA ⊗HB ⊗HC , and ρABC ∈ S(HABC),
the following inequality always holds

S(ρB) + S(ρABC) ⩽ S(ρAB) + S(ρBC) , (SSA)

where ρX := TrXc [ρABC ].

(i) Given any normalised partial trace (for example TrA : S(HABC) → S(HABC) such
that ρABC 7→ 1A/dA ⊗ ρBC , with dA the dimension of HA), which is in particular
a quantum channel, assume that the data-processing inequality for the Umegaki
relative entropy under such a map holds. Then, show that this implies Eq. (SSA). [5]

(ii) For the converse direction, let us show that Eq. (SSA) implies data-processing
inequality for the Umegaki relative entropy under any normalised partial trace. For
that, fix ρ′AB, ρ

′′
AB ∈ S(HAB), consider HC to be 2-dimensional and define:

ρABC = λρ′AB ⊗ EC + (1− λ)ρ′′AB ⊗ FC ,

with EC and FC orthogonal 1-dimensional projections on HC , and λ ∈ [0, 1].

(a) Write down the definition of an operator convex function in I = [0, 1]. [3]

(b) Using that a function f is operator concave if −f is operator convex, show
that Eq. (SSA) for this ρABC is equivalent to the concavity property of the
conditional entropy. [3]

(c) Show that, if f is operator concave and homogeneous (i.e. f(tX) = tf(X) for
all t > 0), then for any positive matrices X and Y ,

d

dt

∣∣∣∣∣
t=0

f(X + tY ) := lim
t→0

1

t
(f(X + tY )− f(X)) ⩾ f(Y ) .

[4]

(d) Prove that the conditional entropy is homogeneous and use (a)-(c) to conclude
the data-processing inequality for the Umegaki relative entropy under normal-
ised partial traces. [5]

Given any quantum channel T , using its Stinespring’s representation, we can show that
the data-processing inequality for the Umegaki relative entropy under T can be derived
from the data-processing inequality under normalised partial traces. You do not have to
show this here.
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4 In this problem, we will axiomatically characterize the Umegaki relative entropy.
Consider a bipartite finite-dimensional Hilbert space HAB = HA ⊗ HB and define
f(·∥·) : S(HAB)× S(HAB) → R+

0 as a function satisfying:

a) Continuity: ρAB → f(ρAB∥σAB) is continuous for any σAB ∈ S(HAB).

b) Additivity.

c) Superadditivity.

d) Data-processing inequality.

Additionally, given a finite-dimensional Hilbert space H, for any pair of states ρ, σ ∈ S(H),
considering its n-fold version H⊗n, and {ρ′n} a sequence in S(H⊗n), we say that f is lower
asymptotically semicontinuous with respect to σ if

lim
n→∞

∥∥ρ⊗n − ρ′n
∥∥
1
= 0

implies that

lim inf
n→∞

1

n

(
f(ρ′n, σ

⊗n)− f(ρ⊗n, σ⊗n)
)
⩾ 0 .

Prove the following steps:

(i) State the definition of the Umegaki relative entropy for a pair of states ρAB, σAB ∈
S(HAB). State the properties of additivity, superadditivity and data-processing in-
equality. Using any properties presented in the course for the von Neumann entropy,
prove that the Umegaki relative entropy satisfies additivity and superadditivity. [7]

(ii) Show that ‘bipartite’ superadditivity for the Umegaki relative entropy (as seen in
the course) can be generalised to ‘multipartite’ superadditivity, i.e. the analogous
inequality with n systems instead of 2. Similarly, justify that ‘multipartite’ additivity
is immediate from ‘bipartite’ additivity. [5]

(iii) Fix σ ∈ S(H) and n ∈ N. For any ρ′n ∈ S(H⊗n), show that if f : S(H⊗n)×S(H⊗n) →
R+
0 satisfies continuity with respect to the first input, multipartite additivity and

multipartite superadditivity, then it is lower asymptotically semicontinuous. You
can use that the 1-norm satisfies the data-processing inequality. [8]

The proof is concluded by showing that the properties of additivity, data-processing
inequality and lower asymptotic semicontinuity imply that f is a multiple of the Umegaki
relative entropy. You do not have to show this here.
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