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1 Steady accretion discs
A convenient Newtonian approximation for a non-spinning black hole’s gravitational

potential in the plane z = 0 is

Φ = − GM

r − rS
,

where M is the black hole’s mass, r is cylindrical radius, rS is the Schwarzschild radius,
and G is the gravitational constant.

(a) Using this potential, find an expression for h(r), the specific angular momentum of a
circular orbit in the plane z = 0 at radius r around the black hole. What is the orbital
frequency Ω(r)?

By determining the horizontal epicyclic frequency, find the radius of the innermost
stable circular orbit.

(b) Suppose the black hole is surrounded by a circular accretion disc aligned with the
plane z = 0. It evolves according to

∂tΣ+
1

2πr
∂rF = 0, F = −

(
dh

dr

)−1

∂rG, G = −2πν̄Σr3
dΩ

dr
,

where Σ is its surface density, F is the radial mass flux, G is the viscous torque, and
ν̄ is the mean turbulent viscosity.

(i) What should we take to be the inner radius of the disc in a steady state? Give
an argument for why we might expect G = 0 at that radius.

(ii) Suppose the disc is in steady state receiving mass at a constant rate Ṁ at its
outer radius. Show that

ν̄Σ =
Ṁ

π

(
x− 1

3x− 1

)[
1−A

(
x−1/2 − x−3/2

)]
,

where x = r/rS and A is a constant that you must find. Compare to the
Keplerian case.

(c) Adopting the α prescription and a perfect gas equation of state, at radii much greater
than rS the vertical structure of the disc may be calculated from

∂zP = −ρΩ2z, ∂zF =
9

4
αPΩ, ∂zT = − 3κρ

16σT 3
F, Pg =

kBρT

µmp
,

where κ is the constant opacity, µ is mean molecular weight, Pg is gas pressure, Pm is
magnetic pressure and P = Pg+Pm. All the other symbols take their usual meanings.
Suppose the magnetic pressure scales as Pm ∼ ρrΩcs, where cs is sound speed.

(i) Show that β ∼ Ma−1 and thus H/r ∼ Ma−1/2, where H is the semi-thickness, β
is the plasma beta, and Ma is the Mach number of the orbital motion.

(ii) Solve the equations of vertical structure using an order of magnitude treatment
to obtain a scaling for H, and thereby show that ν̄ ∝ raΣb, where a and b are
constants you need to find.
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2 Similarity solutions for viscous accretion
Consider an accretion disc, in Keplerian rotation, extending from r = 0 to r = R(t)

subject to a mean viscosity of the form ν̄ = ArmΣn, where Σ is the surface density and A,
m, and n are positive constants. The disc’s total mass and angular momentum are given
by

M = 2π

∫ R

0
rΣ dr, J = 2π

√
GM⋆

∫ R

0
r3/2Σ dr,

where M⋆ is the mass of the central star. In the following we seek similarity solutions that
are valid at late times when the initial conditions are not important.

(a) Suppose no torque is exerted on the disc by the star. Use dimensional analysis to
find the time dependence of R and M in the form of power laws. Why must the disc
spread in order to accrete?

(b) Suppose instead that no mass is accreted onto the star. Find the time dependence of
R and J in this case.

(c) The evolution of Σ is governed by

∂tΣ = 3r−1∂r

[
r1/2∂r

(
r1/2ν̄Σ

)]
.

(i) By adopting

S =
Σ

Σ0

(
r

r0

)3/2

, ν̄ = ν̄0

(
r

r0

)m(
Σ

Σ0

)n

, x =

(
r

r0

)1/2

, τ =
3ν̄0t

4r20
,

where r0, Σ0, and ν̄0 are dimensional constants, derive the following evolution
equation for S,

∂τS = ∂2
x

(
x2m−3n−2Sn+1

)
.

(ii) Set m = 4 and n = 2. Consider the variable ξ = xτ−1/4 and the similarity
solution S = τ−1/4f(ξ), where f(0) = 1.

Derive and solve the nonlinear ordinary differential equation that f must satisfy.
Thereby determine the functional dependence of Σ on r and t.

Show that the total mass is conserved. Hence verify that your solution is
consistent with your answer to part (b)
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3 ‘Viscous convection’ in the shearing sheet
The local dynamics of a viscous Keplerian disc incorporating the latter’s radial

thermal structure may be represented by the Boussinesq shearing sheet. Its governing
equations are:

∂tu+ u · ∇u = − 1

ρ0
∇P − 2Ωez × u−∇Φt −N2θex + ν∇2u,

∂tθ + u · ∇θ = ux, ∇ · u = 0,

where u, P , ρ0, and θ are velocity, pressure, constant background density, and the
buoyancy variable, while Φt = −3

2Ω
2x2 is the tidal potential. Finally, Ω is the orbital

frequency of the sheet, N is the constant radial buoyancy frequency, and ν is the constant
kinematic shear viscosity.

(a) Assuming the disc is orbiting a point mass, derive the expression above for the tidal
potential in the shearing sheet. Make clear all the assumptions you must make.

(b) Demonstrate that u = −3
2Ωxey, P = P0, θ = 0 is an equilibrium solution to the

governing equations, where P0 is a constant. Perturb this equilibrium by small
axisymmetric disturbances u′, P ′, and θ′ and write down their linearised equations.

(c) Assume the disturbances are ∝ exp(ik·x+st), where k = kxex+kzez is a constant real
wavevector and s is a potentially complex growth rate. Thereby derive the dispersion
relation:

s3 + 2k2νs2 +
[
ϖ2(1 + n2) + k4ν2

]
s+ n2k2νϖ2 = 0,

where n2 = N2/Ω2 and ϖ2 = (k2z/k
2)Ω2.

(d) Suppose that N = 0. Find an explicit expression for s. What kind of waves does the
dispersion relation describe and what is the impact of viscosity on these waves?

(e) Suppose now that ν = 0 and N2 < 0. Derive the instability criterion Ω2 + N2 < 0.
Discuss the role of rotation in the disc’s stability.

(f) Finally, let ν ̸= 0 and N2 ̸= 0. Consider small-scale modes so that Ω/(k2ν) ≡ ϵ ≪ 1.

Expand the growth rate so that s = ϵΩs1+ . . . and determine s1. Find the instability
criterion for this mode and compare with part (e). Discuss the role of viscosity in the
disc’s stability.
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