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Let En(f) be the value of the best approximation of a 2π-periodic function
f ∈ C(T) by trigonometric polynomials tn ∈ Tn of degree n with respect to the max-
norm ∥g∥ := maxx∈T |g(x)|, and let ω(f, δ) be the modulus of continuity of f .

(a) State the Chebyshev alternation theorem for a trigonometric polynomial p∗n ∈ Tn to
be a polynomial of best approximation to f ∈ C(T).
Prove that, for the Weierstrass function

g(x) :=
∞∑
k=0

ck cos 5
kx, where ck > 0,

∞∑
k=0

ck <∞ ,

the polynomial p∗n ∈ Tn of best approximation to g is the partial sum

p∗n(x) =
m∑
k=0

ck cos 5
kx , 5m ⩽ n < 5m+1 .

(b) State the inverse theorem for trigonometric approximation and show that

En(f) = O(nα) implies ω(f, 1n) =

{
O(n−α), 0 < α < 1,

O( lnn
n ), α = 1 .

Hence find the order of ω(g, 1n) for the Weierstrass function g in (a) when ck = 1/ak,
1 < a ⩽ 5.

(c) For the case ck = 1/5k in (a), show that for all n ∈ N we have

|g(x+ 1
n)− g(x)| ⩾ c lnn

n , for x = π
2 .

Hence prove that, in this case,

ω(g, 1n) ⩾
c lnn
n .

Explain briefly why the class of functions f with En(f) = O( 1n) cannot be
characterized in terms of ω(f, 1n).
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For a 2π-periodic function f ∈ C(T), let sn(f) be its partial Fourier sum of degree
n, and let σn(f) =

1
n

∑n−1
k=0 sk(f) be its Fejer sum of degree n− 1. Further, let ∥f∥ be the

max-norm of f on T := [−π, π].

(a) From the definition of sn derive the integral representation

sn(f, x) =
1

π

∫
T
Dn(x− t)f(t) dt, Dn(x) =

sin(n+ 1
2)x

2 sin 1
2x

.

(b) Using the following expression for the Fejer kernel Fn

σn(f, x) =
1

π

∫
T
Fn(x− t)f(t) dt , Fn(x) =

1

2n

sin2 n
2x

sin2 1
2x

,

show that 1
π

∫
T |Fn(t)| dt = 1, and prove the estimate

∥σn(f)− f∥ ⩽ c ω2(f,
1√
n
) .

Here
ω2(f, t) := sup

0<h⩽t
sup
x∈T

|f(x− h)− 2f(x) + f(x+ h)|

is the second modulus of smoothness of f .

[Remark. You may use the property ω2(f, λt) ⩽ (λ+ 1)2ω2(f, t) without the proof.]

(c) Prove that if f ′′ is continuous, then ω2(f, t) ⩽ t2∥f ′′∥ , and prove that for such f we
have

∥σn(f)− f∥ = O( 1n) .

By considering an appropriate f0 ∈ C2(T) show that we cannot have a little-o
estimate

∥σn(f)− f∥ = o( 1n)

valid for all f ∈ C2(T).
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Given n, k ∈ N, and a knot sequence (ti)
n+k
i=1 ⊂ [a, b] with distinct knots, let

Mi(t) := k[ti, . . . , ti+k](· − t)k−1
+ , Ni(t) := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the sequences of L1- and L∞-normalized B-splines, respectively.

(a) Prove that the Mi are piecewise-polynomial functions of degree k − 1 and global
smoothness Ck−2, with knots (ti, . . . , ti+k) and with the finite support [ti, ti+k].

(b) Using the Leibnitz rule for divided differences (given below in (c)) derive the
recurrence formula for B-splines:

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t) ,

where Ni,m is the L∞-normalized B-spline of order m with support [ti, ti+m].

(c) Prove the Leibnitz rule for divided differences: if h = fg, then

h[t0...tk] =
k∑

m=0

f [t0...tm] g[tm...tk] .
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(a) State the Korovkin theorem on approximation of functions f ∈ C[0, 1] by positive
linear operators.

(b) Let (Ni)
n
i=1 be a sequence of B-splines of degree k − 1 on a knot-sequence (ti)

n+k
i=1 ,

and let ωi(x) = (x− ti+1) · · · (x− ti+k−1). From the Marsden identity

(x− t)k−1 =
n∑

i=1

ωi(x)Ni(t), tk ⩽ t ⩽ tn+1, ∀x ∈ R ,

find the coefficients (am,i) of the B-spline expansion of the monomials

tm =

n∑
i=1

am,iNi(t) , tk ⩽ t ⩽ tn+1 , m = 0, . . . , k − 1 .

(c) For k ⩾ 3, let Sk(∆n) be a sequence of spline spaces of degree k − 1 on the interval
[0, 1] with the knot-sequences

∆n = {t(n)1 = . . . = t
(n)
k = 0 < t

(n)
k+1 < . . . < t(n)n < t

(n)
n+1 = . . . = t

(n)
n+k = 1}

such that |∆n| := maxi |t(n)i+1 − t
(n)
i | → 0 as n → ∞. Consider the Schoenberg-type

operator

Vn : C[0, 1] → Sk(∆n), Vn(f, t) =
n∑

i=1

f(τ
(n)
i )Ni,n(t) ,

where (Ni,n) is the B-spline basis for Sk(∆n) and τ
(n)
i are any points satisfying

t
(n)
i < τ

(n)
i < t

(n)
i+k .

Using (a) and (b), or otherwise, prove that, for any f ∈ C[0, 1], we have

∥Vn(f)− f∥C[0,1] → 0 (n→ ∞).

[Remark. In your proof, you may suppress index n in τ
(n)
i , t

(n)
i and Ni,n when there

is no ambiguity.]
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(a) Define an orthonormal wavelet ψ. Define a multiresolution analysis of L2(R) with a
generator ϕ, and state the Meyer-Mallat theorem about existence of an orthonormal
wavelet ψ.

(b) Prove that the following two properties of ϕ

1) ϕ(x) =
∑
n

anϕ(2x− n), 2) {ϕ(· − n)}n∈Z is an orthonormal sequence

are equivalent, respectively, to

1′) f(2t) = m(t)f(t) , m(t) =
1

2

∑
n

ane
−int,

2′)
∑
k

|f(t+ 2πk)|2 ≡ 1 a.e.,

where f is the Fourier transform of ϕ, i.e., f(t) = ϕ̂(t) =
∫
R ϕ(x)e

−ixt dx.

(c) Verify that conditions 1′) - 2′) are fulfilled for the function f defined as

f(t) =

{
1, t ∈ [−π, π) ,
0, otherwise.

Hence determine the corresponding generator ϕ and the coefficients an in the equality

ϕ(x) =
∑
n

anϕ(2x− n) .

END OF PAPER

Part III, Paper 318


