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Consider a cluster of chemically homogeneous massive stars composed of hydrogen
and helium with negligible metals. They remain fully mixed but radiative as they evolve.
The stellar material behaves as an ideal gas and radiation pressure is negligible. Hydrogen
burning generates energy at a rate per unit mass ϵ = ϵ0XρT 13. The opacity, κ = κ0(1+X)
depends only on the hydrogen mass fraction X. Show that these stars are homologous
with the zero-age main-sequence radii

R ∝ M3/4

and luminosities
L ∝ M3,

where M is the mass of the star.

Determine the slope of this zero-age main sequence and sketch it in an Hertzsprung–
Russell diagram.

The stars remain fully mixed for their entire hydrogen-burning lifetimes eventually
becoming pure helium stars. During this time they lose negligible mass. Show that, for a
given mass M , their luminosity varies with X such that

L ∝ (1 +X)−1(3 + 5X)−4

and determine the similar relation for R.

Suppose the stars are initially composed of pure hydrogen. Find the logarithmic
gradient of luminosity with effective temperature Te

d logL

d log Te

as X starts to fall at the zero-age main sequence and indicate on the same Hertzsprung–
Russell diagram the direction in which stars start to evolve away from the main sequence.
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From the Euler momentum equation in the form

r̈rr = −1

ρ
∇ · P∇ · P∇ · P+FFF ,

where rrr is the position vector of a fluid element of density ρ, PPP is the symmetric stress
tensor and FFF is the body force acting on the element, derive the virial theorem for a star
in the form

1

2
Ï = 2T + 3

∫
V
P dV − 3PsV +Ω,

where P is pressure equal to PS at the surface and V is the volume of the star. Explain
the meanings of the terms I, T and Ω.

A star of total mass M and radius R has a small isothermal core of mass Mc and
radius Rc ≪ R enclosed within a deep convective envelope. The equation of state is that
of an ideal gas throughout both the core and envelope. Nuclear burning is taking place
just outside the core. The pressure at the surface of the core is Pc and its temperature is
Tc. Use the virial theorem in hydrostatic equilibrium to show that

Pc = λ
McTc

R3
c

− η
M2

c

R4
c

,

where λ > 0 and η > 0 are structural constants.

Explain briefly why the nature of nuclear reactions mean that Tc is approximately
constant.

Deduce that there is a maximum surface pressure Pc,max corresponding to a core
radius Rc,max.

Now assume that the envelope behaves homologously and show that

Pc ∝
T 4
c

M2
.

Deduce that this core and envelope structure can exist only if

Mc < Mcrit,

where the critical core mass
Mcrit ∝ M,

the total mass of the the star.
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3 A spherical star is composed of a gas with equation of state

P = Kρ2,

relating its pressure P to its density ρ for a constant K. Show that the radius of the star
is

R =

(
Kπ

2G

) 1
2

and that the ratio of its mean density ρ̄ to its central density ρc is

ρ̄

ρc
=

3

π2
.

A cubic star of volume L3 is composed of the same material. Show that it is possible
to construct a solution to the structure equations for 0 ⩽ x ⩽ L, 0 ⩽ y ⩽ L and 0 ⩽ z ⩽ L
such that ρ vanishes on the faces of the cube. Show that, for this cubic star,

ρ̄

ρc
=

8

π3
.

Comment briefly on whether you expect such a star to exist in nature both
theoretically and observationally.
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Consider a semi-detached binary star system, with conservative Roche lobe overflow.
Show that the separation a of the circular orbit satisfies

a ∝ (1 + q)4

q2
,

where q = M1/M2 is the mass ratio of the two components, the donor star 1 and accretor
star 2.

In a range of mass ratios of interest the radius of the Roche lobe around the donor
can be approximated by

RL ≈ 0.4aq2/9.

Show that, as the donor conservatively transfers mass to its companion, its Roche-lobe
radius changes at a rate

d logRL

d logM1
= α,

where

α =
20

9

(
q − 4

5

)
.

On the main sequence the radius R of a star of mass M and age t varies according
to

logeR = β logeM +
t

τnuc
,

on a long nuclear timescale τnuc. Both β and τnuc are constant. While R1 < RL the mass
M1 remains constant but when R1 > RL mass transfer takes place at a rate given by

−d logM1

dt
=

1

τdyn
log

(
R1

RL

)
,

where the constant dynamical timescale τdyn ≪ τnuc. Let f = loge(R1/RL). While f < 0
show that

df

dt
=

1

τnuc

and find a corresponding first-order linear differential equation satisfied by f when f > 0.

Show that, as long as β > α,

f → 1

β − α

τdyn
τnuc

.

Explain why this corresponds to steady mass transfer on a nuclear timescale.

How does f evolve if β < α?
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