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(i) Consider a belt of spherical planetesimals with diameters between Dmin to
Dmax ≫ Dmin. The number of planetesimals with diameters D to D + dD is n(D)dD =
KD−αdD, where α is a constant in the range 3 to 4. Determine the normalisation constant
K in terms of the total mass in the belt M and the planetesimal density ρ.

(ii) It can be assumed that the volume density of planetesimals is uniform within
the volume V that the belt occupies, that planetesimals encounter each other at relative
velocities vrel, and that gravitational focussing can be ignored. Show that the rate of
collisions between a planetesimal of size D and those in the size range Dim to Dim+ dDim

is given by
Rcol(D,Dim)dDim = AD2−α

im (1 +D/Dim)
2dDim,

where the constant A should be determined.

(iii) The specific incident energy Q relative to the dispersal threshold Q⋆
D determines

the outcome of a collision of an impactor of size Dim onto a target of size D. Give an
expression for the size of impactor XcD above which collisions become catastrophic and
derive the rate of catastrophic collisions for planetesimals in the belt, showing that for
Xc ≪ 1 this is approximately

Rcc(D) ≈ A(α− 1)−1X1−α
c D3−α.

(iv) A cratering collision is one with Q < Q⋆
D, for which the largest remnant after

the collision has a mass flr = 1 − 0.5Q/Q⋆
D times that of the target m. Show that the

fraction of target mass lost in a cratering collision is 0.5[Dim/(XcD)]3.

(v) Derive an expression for the rate of mass loss from the target due to cratering
collisions, ṁcr, and so show that the charateristic timescale for mass loss due to cratering
collisions is approximately

m/ṁcr ≈ [2(4− α)/(α− 1)]/Rcc(D).

(vi) For catastrophic collisions the largest remnant after the collision has a mass
flr = 0.5(Q⋆

D/Q)1.24. Similar to (v), derive the characteristic timescale for mass loss due
to catastrophic collisions.

(vii) For a steady state collisional cascade in which the dispersal threshold is
independent of size, is mass loss dominated by catastrophic or cratering collisions?
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(i) The equation of motion for a dust particle acted on by radiation pressure and
stellar gravity is r̈rr+ µ(1− β)rrr/r3 = 0, where rrr is the vector from the star to the particle,
r is the magnitude of that vector, µ = GM⋆, M⋆ is the star’s mass, and β is the particle’s
radiation pressure coefficient. The dust particle in question has β ≫ 1. Derive the two
constants of motion, the vector hhh and C, that are associated with the angular momentum
and energy of the particle’s orbit, respectively, and show that this orbit is confined to a
plane.

(ii) Considering motion in the plane show that the path of the orbit can be derived
to be

r = [h2/(µ(1− β))]/[1 + e cos (θ −ϖ)],

where h = |hhh|, θ is the azimuthal angle, and e and ϖ are constants of integration.

(iii) The particle is released with zero relative velocity from a parent body that was
large enough to be unaffected by radiation pressure, and which was on a circular orbit
around the star at a distance ap. Determine the constants h and e for the particle’s orbit
and describe what the angle ϖ represents.

(iv) Derive the particle’s velocity a long time after it was released (i.e., after many
orbital periods of the parent body), and show that at this point it would be found at an
azimuthal angle ∼

√
2/β radians from the point at which it was released.

(v) Derive an expression for the radial velocity of the particle as a function of its
distance from the star.

(vi) The parent body is continuously releasing dust grains with the same β. Use
the result from (v) to sketch the surface density of the resulting disk of dust particles as
a function of distance.

(vii) The dust surface density is observed at large distances from the star and
extrapolated inwards assuming a power law dependence on distance. Derive how much
higher the actual surface density is at a radial distance of 2ap than would be predicted by
this extrapolation.
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(i) Consider a coplanar planetary system comprised of 2 planets on well separated
orbits, i.e., a2 ≫ a1, where aj is the semimajor axis of the j-th planet. With reference
to the disturbing function, describe the different type of perturbations that may affect
the evolution of the planets’ orbits, as well as the physical interpretation of those
perturbations.

(ii) The planets’ orbits have low eccentricities ej ≪ 1 and are not near a mean
motion resonance. Combining their complex eccentricities zj = ej exp (iϖj) into a vector
zzz = [z1, z2], it can be shown that żzz = iAAAzzz, where ϖj is the longitude of pericentre of planet
j, and the 2 by 2 matrix AAA has elements that depend on the masses and semimajor axes
of the planets’ orbits. Derive the solution to this evolution

zj =
2∑

k=1

ejk exp [i(gkt+ βk)],

describing in detail how to determine the constants ejk, gk and βk.

(iii) Consider a test particle on a coplanar orbit within this planetary system. The
evolution of the particle’s complex eccentricity z due to perturbations from the planets is
given by

ż = iAz + i
2∑

j=1

Ajzj ,

where A, A1 and A2 are constants that depend on the masses and semimajor axes of the
planets as well as the particle’s semimajor axis a. Derive the evolution of the particle’s
complex eccentricity and describe its behaviour.

(iv) Sketch how you expect A to depend on the particle’s semimajor axis, and hence
why there must be either 2, 3 or 4 locations in the planetary system where A = g1.

(v) The particle’s orbit is also subject to a dissipative force which damps its
eccentricity e on a timescale τ at a rate proportional to eccentricity, i.e., there is an
additional perturbation which can be written ė = −e/τ . Derive the solution to the
evolution in this case and describe qualitatively how that differs to the case without
dissipation.

(vi) Consider the particle’s orbit on timescales t ≫ τ . What does this orbit tend to
for particles at locations for which A = g1 and how is that different to particles that are
not subject to the dissipation?

(vii) Explain without detailed calculation what you expect the particle’s orbit to be
for t ≫ τ close to one of the planets.
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(i) A planetesimal is orbiting a star of mass M⋆. The orbit is just bound, with
eccentricity e ≈ 1. Its pericentre distance q is very close to that of a planet of mass
Mp ≪ M⋆ which is on a coplanar circular orbit at a distance ap. Determine the distance
from the star at which the planetesimal is moving at the same angular speed as the planet,
the approximate true anomaly of the planetesimal at this point (to the nearest 10 deg),
and its approximate angular separation from the planet (as seen from the star).

(ii) The two objects have a conjunction very close to the planetesimal’s pericentre.
Ignoring any perturbation to the orbit due to the encounter, sketch the orbit of the
planetesimal in the frame rotating with the planet.

(iii) Consider the perturbation to the planetesimal’s orbit as a hyperbolic encounter
in which stellar gravity can be ignored, with this interaction starting at the planetesimal’s
pericentre when both objects are moving azimuthally. In the planetocentric frame, this
interaction deflects the planetesimal’s velocity by an angle θ, which you can assume to be
given by

sin (θ/2) = [1 + b2v4∞/(GMp)
2]−1/2,

for an impact parameter b and incoming velocity in this frame of v∞. If the pericentre is
just outside the planet’s orbit at q = ap(1 + δ) near its L2 Lagrange equilibrium point,
show that θ ≈ A(µ/δ), where µ = Mp/M⋆ and A should be determined.

(iv) Sketch the path of the encounter in the planetocentric frame and the change in
the planetesimal’s velocity vector in the inertial frame. Hence show that the square of its
velocity in the inertial frame changes by

∆(v2) = −B(µ/δ)2,

where B should be determined.

(v) Comment on how the semimajor axis of the planetesimal’s orbit has changed
as a result of the encounter and derive an expression for how its pericentre distance has
changed.

(vi) Discuss the expected evolution of the planetesimal’s orbit on long timescales.
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