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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u, (1)

∂p

∂t
+ u ·∇p = −γp∇ · u, (2)

ρ

(
∂u

∂t
+ u ·∇u

)
= −ρ∇Φ−∇p+

1

µ0
(∇×B)×B, (3)

∂B

∂t
= ∇× (u×B), (4)

∇2Φ = 4πGρ. (5)

You may assume the following results from vector calculus. For vector fields F and G:

(∇× F)× F = F ·∇F−∇
(1
2
|F|2

)
, (6)

∇ · (F×G) = G · (∇× F)− F · (∇×G), (7)

∇× (F×G) = G ·∇F− F ·∇G−G(∇ · F) + F(∇ ·G). (8)

For scalar and vector fields f and F, in cylindrical polar coordinates (r, ϕ, z):

∇f =
∂f

∂r
er +

1

r

∂f

∂ϕ
eϕ +

∂f

∂z
ez, (9)

∇ · F =
1

r

∂(rFr)

∂r
+

1

r

∂Fϕ

∂ϕ
+
∂Fz

∂z
, (10)

∇× F =

(
1

r

∂Fz

∂ϕ
−
∂Fϕ

∂z

)
er +

(
∂Fr

∂z
− ∂Fz

∂r

)
eϕ +

1

r

(
(rFϕ)

∂r
− ∂Fr

∂ϕ

)
ez. (11)

In spherical polar coordinates (r, θ, ϕ):

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ, (12)

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(Fθ sin θ)

∂θ
+

1

r sin θ

∂Fϕ

∂ϕ
, (13)

∇× F =
1

r sin θ

(
∂(Fϕ sin θ)

∂θ
− ∂Fθ

∂ϕ

)
er +

(
1

r sin θ

∂Fr

∂ϕ
− 1

r

∂(rFϕ)

∂r

)
eθ

+
1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
eϕ. (14)
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1

(a) When can an astrophysical fluid flow reasonably be treated as the adiabatic flow
of a perfect gas with adiabatic exponent γ = 5/3?

(b) Consider the steady, adiabatic, spherically symmetric accretion of a perfect gas
with γ = 5/3 on to a body of mass M . The body can be regarded as a Newtonian point
mass that absorbs any incoming gas (similarly to a black hole). At large distance from
the body, the gas can be considered to be essentially at rest and to have uniform density
ρ0 and adiabatic sound speed vs0. The self-gravity of the gas can be neglected. Show
that ρ ∝ v3s and that the Mach number M(r) of the accretion flow is related to the radial
coordinate r by

AṀ1/2
(
M3/2 + 3M−1/2

)
= GM +Br,

where Ṁ is the accretion rate and A and B are positive constants that you should express
in terms of ρ0 and vs0.

(c) Show that the flow does not become supersonic.

(d) Explain why the solution is valid for all r > 0 only if the accretion rate does not
exceed the critical value

Ṁcrit =
πρ0(GM)2

v3s0
.

(e) Define ṁ = Ṁ/Ṁcrit and consider the approximate behaviour of the flow in
the limit r ≪ GM/B, assuming that ṁ ⩽ 1. Show that the Mach number approaches
a constant value M1 and find the algebraic relation between ṁ and M1. Determine the
scaling of the density and sound speed with r in this limit and show that the fluid velocity
is approximately (

ṁM3
1

4

)1/4(
GM

r

)1/2

.
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2

Amodel ‘star’ consists of a perfect gas in hydrostatic equilibrium in the gravitational
potential

Φ =
1

2
Ω2r2,

where Ω is a positive constant and (r, θ, ϕ) are spherical polar coordinates. In this question
the potential Φ is regarded as fixed and the self-gravity of the star is neglected.

(a) Write down the relation between pressure and density that holds in hydrostatic
equilibrium. Solve it in the case of a polytropic model with

p = Kρ1+1/n,

where K and n are positive constants, and express the density and pressure as functions
of r for a model star (in the fixed gravitational potential) with outer radius R.

(b) Formulate the linearized equations for small perturbations of the star, again
neglecting its self-gravity. Consider oscillation modes in which the radial displacement is
of the form

ξr = Re
[
ξ̃r(r)Y

m
ℓ (θ, ϕ) e−iωt

]
,

and similarly for the Eulerian perturbations δρ and δp, while the horizontal displacement
is of the form

ξh = Re
[
ξ̃h(r)∇Y m

ℓ (θ, ϕ) e−iωt
]
,

where Y m
ℓ (θ, ϕ) is one of the spherical harmonic functions (with integers ℓ and m such

that ℓ ⩾ |m|) satisfying

∇2Y m
ℓ = −ℓ(ℓ+ 1)

r2
Y m
ℓ .

Show that the wave amplitudes ξ̃r, ξ̃h, δ̃ρ and δ̃p (on which the tildes are henceforth
omitted) satisfy

−ρω2ξr = −g δρ− d δp

dr
,

−ρω2ξh = −δp,

δρ = −ξr
dρ

dr
− ρ∆,

δp = −ξr
dp

dr
− γp∆,

where g = Ω2r is the inward radial gravity, γ is the adiabatic exponent and

∆ =
1

r2
d(r2ξr)

dr
− ℓ(ℓ+ 1)

r2
ξh.

(c) Verify that there is an oscillation mode with ∆ = 0 and ξr ∝ rℓ−1, for any integer
ℓ ⩾ 1. Obtain an expression for the squared frequency ω2

ℓ of this mode and describe its
physical nature.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Now consider a problem in which the star is tidally forced by a massive com-
panion in a circular orbit and therefore experiences (in addition to the fixed potential Φ)
a tidal potential

Ψ = Re
[
Arℓ Y m

ℓ (θ, ϕ) e−iωt
]
,

where A and ω are real constants representing the amplitude and angular frequency of the
tidal forcing. (Note that ω is now externally imposed and different from the frequency of
a free oscillation mode considered in the previous parts.) Show that the periodic response
of the star to this forcing involves the oscillation mode described in part (c) such that the
radial displacement is

Re

[(
A

ω2 − ω2
ℓ

)
ℓrℓ−1 Y m

ℓ (θ, ϕ) e−iωt

]
,

where ωℓ is the natural frequency of the mode found in part (c). Comment on the
dependence of the amplitude of the forced response on the tidal forcing frequency ω.
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3

Consider a static equilibrium state of uniform density ρ, pressure p and magnetic
field B, in the absence of gravity. You may assume that small perturbations of this state
are governed by the linearized equation of motion

ρ
∂2ξ

∂t2
= −∇δΠ+

1

µ0
B · ∇δB,

with

δΠ = −γp∇ · ξ +
B · δB
µ0

and δB = B · ∇ξ −B(∇ · ξ),

where ξ is the displacement and δ denotes an Eulerian perturbation. You may also assume
that, for plane waves in which the displacement is of the form

ξ = Re
[
ξ̃ exp(ik · x− iωt)

]
(and similarly for all Eulerian perturbations), where ξ̃ and k are constant vectors and ω
is a constant, the wave amplitude ξ̃ satisfies the algebraic equation

ω2ξ̃ =
[
(v2s + v2a)(k · ξ̃)− (k · va)(va · ξ̃)

]
k+ (k · va)

2ξ̃ − (k · va)(k · ξ̃)va, (∗)

where vs is the adiabatic sound speed, va is the Alfvén velocity and va = |va|.

(a) Define the adiabatic sound speed and Alfvén velocity appearing in equation (∗).

(b) Deduce from equation (∗) that the dispersion relations for MHD waves are

ω2 = (k · va)
2 and ω4 − (v2s + v2a)|k|2ω2 + v2s |k|2(k · va)

2 = 0.

Discuss briefly the physical interpretation of the three different MHD wave modes.

(c) Suppose that B = B ex and the wave is in the xz-plane such that ky = 0. Rearrange
the second dispersion relation in part (b) to show that

k2z =
(v2 − v2s )(v

2 − v2a)

(v2 − v2t )(v
2
s + v2a)

k2x,

where v = ω/kx is the phase speed of the wave in the x-direction and vt is a speed
(which you should find) smaller than both vs and va. Assuming that ω and kx are
real, determine the ranges of v2 for which kz is (i) real or (ii) imaginary.

(d) Use the z-component of the equation of motion to find an expression for the ratio
δ̃Π/ξ̃z in terms of ρ, va, v, kx and kz, for a wave of the type considered in part (c).

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Consider a static equilibrium state consisting of two uniform regions of the type
considered in part (c), separated by an interface at z = 0:

B =

{
B+ ex, z > 0,

B− ex, z < 0,
ρ =

{
ρ+, z > 0,

ρ−, z < 0,
p =

{
p+, z > 0,

p−, z < 0,

where B±, ρ± and p± are positive constants such that the total pressure is continuous.

An interfacial wave is a solution of the linearized equations on this equilibrium state
that decays exponentially with distance from the interface. In each region the wave
is therefore of the type considered in part (c), with an imaginary value of kz of the
appropriate sign. The waves in the two regions are to be matched at the interface
using appropriate physical conditions.

(i) Explain why the total pressure perturbation and the vertical displacement must
be continuous at the interface.

(ii) Use these boundary conditions and the result of part (d) to match the wave
solutions in the two regions at the interface.

(iii) Show that the phase speed v of the interfacial wave in the x-direction satisfies

v2 =
Σ+v

2
a+ +Σ−v

2
a−

Σ+ +Σ−
,

where Σ± = ρ±/|kz±|, and kz± are the imaginary values of kz in the two regions.
Deduce that v lies between the Alfvén speeds in the two regions.

[You may assume that v is in an appropriate range such that k2z < 0 in both
regions.]

Part III, Paper 314 [TURN OVER]



8

4

(a) Explain what is meant by a force-free magnetic field and why it occurs naturally
in the limit of very low density in the exterior of an astrophysical body.

(b) Show that the rate of change of the energy of a force-free magnetic field in a
volume V bounded by a surface S is given, in ideal MHD, by

1

µ0

∫
S
[(u×B)×B] · dS.

(c) Explain why an axisymmetric magnetic field can be expressed as a sum of
poloidal and toroidal parts, B = Bp+Bt, with the poloidal magnetic field written in terms
of a function ψ(r, z) as Bp = ∇ψ ×∇ϕ, where (r, ϕ, z) are cylindrical polar coordinates,
and the toroidal magnetic field being Bt = Bϕ(r, z) eϕ. Explain how ψ is related to the
distribution of poloidal magnetic flux.

(d) Show that an axisymmetric force-free magnetic field has rBϕ = F (ψ), where
F (ψ) is an arbitrary function of the flux function. Show further that the flux function
satisfies the Grad–Shafranov equation

−r ∂
∂r

(
1

r

∂ψ

∂r

)
− ∂2ψ

∂z2
= F

dF

dψ
.

Determine how F (ψ) is related to the distribution of poloidal electric current.

END OF PAPER
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