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1 Let ϕ = ϕ(x, t). Find the Euler–Lagrange equation corresponding to the Lagrangian
density

L =
1

2

((∂ϕ
∂t

)2
−
(∂ϕ
∂x

)2)
− U(ϕ).

Write down the expression for the total energy corresponding to L, and show that it is
conserved from the Euler–Lagrange equations.

From now on set

U =
1

2
(1− ϕ2)2ϕ4.

(i) Let ϕ(0,1)(x) be a kink interpolating between two vacua ϕ = 0 and ϕ = 1. Find α
and β such that ϕ → αϕ and x → βx are discrete symmetries of the field equations,
and express all other kinks and anti kinks in terms of ϕ(0,1).

(ii) Construct a superpotential W such that

U =
1

2

(dW
dϕ

)2

and use the Bogolmolny argument to find the energy of ϕ(0,1).

(iii) Show that the kink ϕ ≡ ϕ(0,1) is implicitly given by

1

2
ln
(1 + ϕ

1− ϕ

)
− 1

ϕ
= x−A,

where A is a constant.

(iv) Show that

ϕ(0,1) ∼

{
1

A−x as x → −∞
1− e−2(x−b) as x → ∞

where b is a constant which should be determined in terms of A. Sketch the kink
profile.
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2 Let η be a Euclidean metric on R4, and let vol be a volume form.

(i) Define the Hodge ⋆–operator of (R4, η, vol) and show that

⋆ω ∧ ⋆ω = ω ∧ ω where ω ∈ Λ2(R4).

Deduce that, if F ∈ Λ2(R4) ⊗ su(2) satisfies F = − ⋆ F then the Yang–Mills action
for instantons equals 8π2c2, where c2 is the second Chern number.

The anti–self–dual Yang–Mills equations on R4 with the Euclidean metric

ds2 = |dz|2 + |dw|2

are given by
Fwz = 0, Fw̄z̄ = 0, Fww̄ + Fzz̄ = 0 (1)

where F = dA+A∧A, and A = Awdw+Aw̄dw̄+Azdz+Az̄dz̄ take values in a Lie algebra
g of a Lie group G, and (z, w) are complex coordinates on R4

(ii) Write down a Lax pair with spectral parameter for (1).

(iii) Show that there exists a gauge such that Aw = Az = 0.

(iv) Use the 2nd equation in (1) to show that there exists a G–valued function J =
J(w, z, w̄, z̄) such that

A = J−1∂w̄J dw̄ + J−1∂z̄J dz̄,

and deduce that the ASDYM system reduces to

∂w(J
−1∂w̄J) + ∂z(J

−1∂z̄J) = 0.

(v) Hence show that in this gauge the anti–self–dual Maxwell equations on R4 are
equivalent to the Laplace equation for a function which you should specify.
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3 Define the topological degree deg(ϕ) of a smooth map ϕ between oriented closed
manifolds M1,M2, in terms of the volume form ω on M2.

Consider ϕ : S2 → S2 with ϕ = (ϕ1, ϕ2, ϕ3) ∈ R3, |ϕ| = 1 and show that

deg(ϕ) =
1

2vol(S2)

∫
ϵabcϕadϕb ∧ dϕc.

(i) Let f : CP1 → CP1. Using the method of preimages find deg(f) if

f(z) =
P (z)

Q(z)
(1)

where P and Q are holomorphic polynomials in z of degrees m and n respectively
with no common factors (you are not required to show that the method of pre-images
agrees with the definition of topological degree).

(ii) Consider the case Q(z) = 1, P (z) = zm and find deg(f) using the pull–back of a
volume form

idf ∧ df̄

(1 + |f |2)2
.

(iii) Let ϕ : R2 → S2 and

E[ϕ] =

∫
R2

∂zϕ
a∂z̄ϕ

aidz ∧ dz < ∞.

Assume that ϕ extends to a compactification S2
∞ = R2 + {∞} and show that

E[ϕ] ⩾ c|deg(ϕ)| where c > 0 is a constant which you should find, and the equality
is achieved when ϕ satisfies the first order Bogomolny equations which you should
derive.
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