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1 The following line element is a solution of the vacuum Einstein equation in six
spacetime dimensions

ds2 = −
(
1−

r2+
r2

)
dt2 +

dr2

1− r2+
r2

+ r2dΩ2
3 + dz2,

where z is a periodic coordinate of period L, i.e. z ∼ z + L, and

dΩ2
3 = dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)
is the metric on a unit-radius round three-sphere with χ ∈ [0, π], θ ∈ [0, π], ϕ ∼ ϕ + 2π.
You may assume that r+ > 0 and that we choose a time-orientation where ∂/∂t is future-
directed for r > r+.

(a) Show that the geodesic equation for null, spacelike and timelike geodesics can be
reduced to an equation of the form

1

2

(
dr

dτ

)2

+ Ṽ (r) = 0 ,

where τ is a suitable affine parameter. Determine Ṽ (r). [10]

(b) Show that one can define a quantity r⋆ such that u = t − r⋆ and v = t + r⋆ are
constant on radial outgoing and ingoing null geodesics, respectively. [5]

(c) Show that r = r+ is a null hypersurface and is a Killing horizon of a Killing vector
field K that you should determine, and find its associated surface gravity. What is
the topology of this null hypersurface? [5]

(d) Using (v, r, χ, θ, ϕ, z) coordinates, show that the region r < r+ is part of a black hole
region. [10]
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2 Consider a null geodesic congruence with tangent vector U in a four-dimensional
spacetime (M, g).

(a) Define the expansion θ, rotation ω̂ and shear σ̂ of a null geodesic congruence in
terms of Bab = ∇bUa. [4]

(b) Show that
U c∇cBab +Bc

bBac = R d
cba UdU

c ,

and thus determine U c∇cω̂ab in terms of θ, σ̂ and ω̂. [10]

(c) In this part of the question, assume that the null congruence contains the generators
of a null hypersurface N and that we are only interested in the behaviour of those
generators.

(i) Near N , explain how to construct Gaussian null coordinates (λ, r, yi):

ds2 = 2drdλ+ r2Fdλ2 + 2rhidλdy
i + hijdy

idyj ,

with i = 1, 2. [8]

(ii) Show that

∂
√
h

∂λ
= θ

√
h

where h = dethij and give a physical interpretation for θ. [8]

3 State what an asymptotically flat spacetime at future null infinity I+ is. Explain in
detail how this definition leads to a class of spacetimes that approach Minkowski spacetime
near I+. You may assume in your answer that the spacetime (M, g) satisfies the vacuum
Einstein equation. Additionally, you may use, without proof, that if ḡ = Ω2 g, then

Rab = R̄ab + 2Ω−1∇̄a∇̄bΩ+ ḡabḡ
cd(Ω−1∇̄c∇̄dΩ− 3Ω−2∇̄cΩ∇̄dΩ) ,

where ∇̄ is the Levi-Civita connection of ḡ, R̄ab are the components of the Ricci tensor of
ḡ, and Rab are the components of the Ricci tensor of g. [30]
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(a) State the second law of black hole mechanics and sketch a proof. You may assume
that the generators of the future horizon are complete to the future. [10]

(b) Consider a minimally coupled massless Klein-Gordon scalar field ϕ propagating on a
fixed D−dimensional spacetime with coordinates (η, z,x) = (η, z, x1, . . . , xD−2) and
metric

ds2 = a(η)2
(
−dη2 + dz2

)
+ δij dx

idxj , with i, j = 1, . . . , D − 2 .

(i) Let

ϕ(η, z,x) =

∫
RD−2

dkD−2

∫ +∞

−∞
dkz Φkz k(η)e

−ikz z−ik·x .

Show that the scalar wave equation for ϕ(η, z,x) reduces to

∂2Φkz k(η)

∂η2
+ ω2

kz k(η)Φkz k(η) = 0,

for some function ωkz k(η) that you should identify. [6]

(ii) Assume that a(η) takes the constant values a+ for η > 0 and a− for η < 0.
Furthermore, let M− and M+ denote the regions where η < 0 and η > 0,
respectively. Assuming that the basis functions are C1 everywhere, obtain the
normalised positive frequency modes of Φkz k in M±. [7]

(iii) Assume Φkz k is in the vacuum state in M−. What is the expected number of
particles with wavenumber (kz,k) in M+? [7]
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