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(a) From the continuity equation, determine the scaling of the energy density ρ with scale
factor a for a component with constant equation of state parameter w. Hence show that
the Hubble parameter can be written as H(z) = H0E(z), with

E(z) =

[∑
i

Ωi,0(1 + z)3(1+wi)

]1/2
,

where you should define Ωi,0 and where the sum is over components i with constant
equation of state parameters wi.

(b) Explain how the expansion of the universe, parametrized by a(t), can be determined
given Ωi,0 and wi for all components. Deduce how the scale factor a evolves with time for
a universe whose energy density is dominated by cosmic strings (which have an equation
of state parameter w = −1/3.)

Throughout the remainder of this question, you should consider a positively curved
universe with matter, described by the Friedmann equation:(

ȧ

a

)2

=
8πGρm

3
− k

a2
,

where ρm is the matter energy density and k is the curvature parameter.

(c) Show that there is a parametric solution describing the time evolution of the scale
factor a in terms of a parameter θ

a = A(1− cos θ)

t = B(θ − sin θ),

where you should determine the constants A and B.

(d) Expand a and t in powers of θ and hence show that at early times

a

t2/3
= C

(
1− 1

20

(
6t

B

)2/3

+ · · ·

)

where you should determine the constant C.

(e) Assume that, although radiation does not influence the background expansion of this
universe, other galaxies and the CMB radiation are still visible in telescopes. Briefly
discuss how galaxies and the CMB will appear in observations as the universe recollapses,
i.e. θ → 2π.
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2 In this question you will discuss recombination and the CMB power spectrum.
(a) At high temperatures (T > 1eV), electrons, protons and neutral Hydrogen are in
equilibrium due to reactions such as e− + p ↔ H + γ. Show that the equilibrium number
density nH of neutral Hydrogen is given by

nH

n2
e

=

(
2π

meT

)3/2

eBH/T

where ne is the free electron number density, BH = me +mp −mH is the binding energy
of Hydrogen, and me,mp,mH are the electron, proton and neutral Hydrogen masses. You
may assume charge neutrality of the universe.

[Hint: you may assume that the equilibrium number density for non-relativistic

particles is neq
i = gi

(
miT
2π

)3/2
exp

(µi−mi

T

)
]

(b) Hence derive the Saha equation, which describes the recombination process in
equilibrium: (

1−Xe

X2
e

)
eq

=
2ζ(3)

π2
η

(
2πT

me

)3/2

eBH/T ,

where Xe ≡ ne
nb

is the free electron fraction and η ≡ nb
nγ

∼ 10−9 is the baryon-photon ratio,

with nb the baryon number density. You may neglect all nuclei other than protons (so
that nb ≈ np+nH , with np the proton number density) and may assume charge neutrality
of the universe. You may also assume that the equilibrium number density of photons is
given by nγ = 2ζ(3)

π2 T 3.

Define the recombination temperature Trec as when Xe falls below Xe = 0.1.
Evaluating the Saha equation gives Trec ≈ 0.3eV ≈ 3600K. Why is this temperature
much lower than the naive recombination temperature T ≈ BH ≈ 13.6eV?

(c) Explain succinctly why the CMB temperature power spectrum shows an oscillatory
pattern that approximately follows a squared cosine in angular multipole. [You may
neglect the impact of baryons in your explanation.] In your explanation, note the
importance of the sound horizon. If the oscillatory pattern had followed a squared sine
(rather than a cosine), what would this have implied?

[Hint: You may wish to recall that the equation governing the Sachs-Wolfe term

S = ϕ+δr/4 is S̈(k, τ)+ k2

3 S(k, τ) = 0 and that the CMB power spectrum is approximately
proportional to the square of the Sachs-Wolfe transfer function, i.e. that ℓ(ℓ + 1)Cℓ ∝
T 2
S(k = ℓ

χ∗
, τ∗).]

(d) A model of new physics at early times is proposed that changes physics during and
prior to recombination. In this model, the energy densities of all components prior to
recombination are increased beyond standard LCDM values by a factor ρ → λρ and
BH is modified from its standard value by BH → µBH (here, λ and µ are constants);
these changes do not persist after recombination. Can a suitable choice of λ and µ
leave the appearance of the CMB power spectrum approximately unchanged? Briefly
and qualitatively justify your answer.
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3 In this question you will discuss the effect of massive neutrinos on the matter
power spectrum. You may assume in all parts of the question that the universe’s energy
density is dominated by matter, that all relevant scales are sub-horizon, and that linear
perturbation theory is sufficiently accurate for all calculations. Subscripts of m, c, b
and ν indicate matter, cold dark matter (CDM), baryon and neutrino energy densities,
respectively. ρi is the total energy density of component i, and ρ̄i is the unperturbed
background energy density of this component.

(a) Starting from the approximate evolution equation

δ̈m + 2Hδ̇m − 4πGρ̄mδm = 0,

where dots indicate derivatives with respect to coordinate time t, show that the matter
fractional density contrast δm grows with the scale factor a as δm ∝ a.

(b) Neutrinos have small masses and become non-relativistic after a redshift zν (you may
make the approximation that all three neutrino species become non-relativistic at the same
redshift). Neutrinos then contribute to the matter energy density along with CDM and
baryons, so that ρm = ρc+ρb+ρν . To more accurately calculate the growth of the matter
fractional density contrast δm = δρc+δρb+δρν

ρ̄c+ρ̄b+ρ̄ν
after zν , one can separately compute the

evolution of the CDM-baryon fractional density contrast δcb ≡ δρc+δρb
ρ̄c+ρ̄b

and the neutrino

density contrast δν ≡ δρν
ρ̄ν

. Show first that

δm = (1− fν)δcb + fνδν ,

where fν is a constant defined as fν ≡ Ων,0

Ωm,0
.

(c) The evolution of δcb can be described with the equation

δ̈cb + 2Hδ̇cb − 4πGρ̄mδm = 0.

Assume that δν ≈ 0 on the scales relevant to this question (because free-streaming rapidly
smooths out variations in neutrino density). Hence show that the growth of δcb after zν is
slightly slowed by the presence of massive neutrinos, with the growth given by:

δcb ∝ aX(fν).

Here X(fν) is a function of fν that you should specify. You may assume that fν ≪ 1 so
that all calculations can be performed to first order in fν .

(d) Deduce that when neutrinos have a non-negligible mass so that fν > 0, the matter
power spectrum Pfν (k, z) is suppressed compared to the matter power spectrum with
massless neutrinos Pfν=0(k, z), with the suppression described by the expression

Pfν (k, z) ≈ (1− 2fν −
6

5
fν ln

1 + zν
1 + z

)Pfν=0(k, z)

to first order in fν .
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In this question you will discuss different models of the early universe.

(a) Consider a standard single-field slow-roll inflation model, where ϕ is the inflaton field
and V (ϕ) is its potential; the Lagrangian for the inflaton is L = 1

2 ϕ̇
2 − 1

2a2
(∇ϕ)2 − V (ϕ)

and the equation of motion for the inflaton field is ϕ′′ + 2a′

a ϕ
′ − ∇2ϕ + a2 ∂

∂ϕV (ϕ) = 0,
where superscript dots and primes indicate derivatives with time and conformal time,
respectively. You may assume that, during inflation, a(τ) = −(Hτ)−1 (with τ the

conformal time) and that H =

√
V (ϕ)
3M2

pl
≈ constant. Canonical quantization leads to

the following expression for the field operator f̂ = aδ̂ϕ, describing perturbations to the
inflation field δϕ:

f̂(τ,x) =

∫
d3k

(2π)3

[
f∗
k(τ)â

†
ke

−ik·x + fk(τ)âke
ik·x
]

π̂(τ,x) =

∫
d3k

(2π)3

[
(f∗)′k(τ)â

†
ke

−ik·x + f ′
k(τ)âke

ik·x
]
,

where fk(τ) = e−ikτ
√
2k

(1 − i
kτ ) and âk, â

†
k′ are lowering and raising operators. State the

commutation relations obeyed by âk and â†k′ . By calculating the two point correlation
function of δϕ, show that the dimensionless power spectrum of δϕ after horizon exit is

∆2
δϕ(k) =

(
H

2π

)2

[Hint: you may assume that the dimensionless power spectrum ∆2
δϕ is related to the two

point correlation function via ⟨0|δ̂ϕ(τ,x)δ̂ϕ(τ,x+ r)|0⟩ =
∫

d3k
(2π)3

2π2

k3
∆2

δϕe
−ik·r.]

(b) Now assume that, in addition to the inflaton field ϕ, an additional scalar field σ,
known as the “curvaton”, is present in the early universe. This field’s Lagrangian is
L = 1

2 σ̇
2− 1

2a2
(∇σ)2− 1

2m
2
σσ

2 and its equation of motion is σ′′+2a′

a σ
′−∇2σ+a2m2

σσ = 0;
the curvaton has no interactions with the inflaton field. Assume that the energy density
in the curvaton field is negligible at early times during inflation and that mσ ≪ H.

Consider the perturbed curvaton field σ(τ,x) = σ̄(τ) + fσ(τ,x)
a(τ) , where σ̄ is the

background field value and δσ ≡ fσ/a is the perturbation in the field. Neglecting
metric perturbations, show that each Fourier mode of the curvaton perturbation obeys the

following equation: (fσ
k )

′′ +
(
k2 − a′′

a

)
fσ
k = 0. Deduce the dimensionless power spectrum

of fluctuations in the curvaton field, ∆2
δσ(k), after horizon exit.

(c) After inflation ends, the inflaton field decays entirely into photons, reheating the
universe. The background curvaton field subsequently evolves according to the Klein-
Gordon equation ¨̄σ + 3H ˙̄σ +m2

σσ̄ = 0. Assuming that the 3H ˙̄σ term is negligible at this
stage, show that the background curvaton field has an oscillatory solution. Average the
density and pressure of the background curvaton field over many periods of oscillation and
hence argue that the average energy density in the curvaton field falls as ρσ ∝ a−3.

[Hint: you may assume that the energy density and pressure of a scalar field X are given
by ρ = 1

2Ẋ
2 + V and P = 1

2Ẋ
2 − V .]

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Why is only the curvaton energy density relevant at late times? Assume that the
curvaton decays into standard model particles at such late times. Could a cosmology in
which all perturbations are generated by this curvaton field (rather than an inflaton field,
which drives inflation) be consistent with our observations? Briefly justify your answer.

END OF PAPER
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