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1 The anti-de Sitter spacetime is the manifold R4 = {(t,x) : t ∈ R,x ∈ R3} equipped
with the metric

g = −
(
1 + |x|2

)
dt2 + |dx|2 − (x · dx)2

1 + |x|2

a) The standard polar coordinates (r, θ, ϕ) are defined for x ̸= 0 by

x = (r cosϕ sin θ, r sinϕ sin θ, r cos θ).

Show that the metric in the coordinates (t, r, θ, ϕ) takes the form

g = −w(r)dt2 +
dr2

w(r)
+ r2(dθ2 + sin2 θdϕ2)

for some positive function w(r) that you should determine.

b) Write down an action whose critical curves are the affinely parameterised geodesics
of g in the (t, r, θ, ϕ) coordinates and use it to determine the Christoffel symbols of
the metric in these coordinates.

c) Show that a geodesic which is initially moving radially (ie with θ̇ = ϕ̇ = 0) will
remain radial, and that it satisfies

k = − e2

1 + r2
+

ṙ2

1 + r2

where k and e are constants whose significance you should comment on.

[Here ˙= d
dλ , where λ is the affine parameter of the geodesic]

d) Show that every radial timelike geodesic starting from r = 0 returns to r = 0 after
a proper time T (as measured along the geodesic) that you should determine.

e) Show that every radial null geodesic starting from r = 0 at t = 0 has r(λ) → ∞ and
t(λ) → τ as λ → ∞ for some finite τ that you should determine.

Part III, Paper 309



3

2 Suppose that (M, g) is a smooth (n + 1)-dimensional Lorentzian manifold. Let ∇
be the Levi-Civita connection.

a) i) Define the Riemann tensor Ra
bcd. You should justify carefully why any

expression you give defines a tensor.

ii) Show that in a coordinate basis

Rτ
σµν = ∂µΓσ

τ
ν − ∂νΓσ

τ
µ + Γσ

ρ
νΓρ

τ
µ − Γσ

ρ
µΓρ

τ
ν .

iii) Establish the Bianchi identities

Ra
[bcd] = 0, Ra

b[cd;e] = 0,

and the contracted Bianchi identity Ra
b;a − 1

2R;b = 0.
[You may assume the existence of normal coordinates about any point p ∈ M .]

b) The Bianchi identities imply the following identity for the Riemann tensor

0 = Rabcd;e
e + αRa

e
c
fRbedf − 2Ra

e
d
fRbecf +RabefRcd

ef

+RabecR
e
d −RabedR

e
c +Rad;bc +Rcb;ad −Rbd;ac −Rac;bd, (∗)

where α is a constant.

i) By considering an appropriate symmetry of the Riemann tensor determine α.

ii) Show that if g satisfies the vacuum Einstein equations then the Penrose wave
equation holds:

0 = Rabcd;e
e + αRa

e
c
fRbedf − 2Ra

e
d
fRbecf +RabefRcd

ef .

c) Suppose that the spacetime metric may be written in coordinates as a perturbation
of the Minkoswki metric:

gµν = ηµν + ϵhµν , ηµν = diag(−1, 1, 1, 1).

for ϵ a small quantity. Formally expanding the Riemann tensor in ϵ as

Rµνστ = R(0)
µνστ + ϵR(1)

µνστ +O(ϵ2)

explain why R
(0)
µνστ must vanish and use the result of the previous part to find an

equation satisfied by R
(1)
µνστ . Does your equation depend on a choice of gauge for the

metric perturbation hµν?
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3

a) Suppose that a spacetime metric may be written in wave coordinates as a perturb-
ation of the Minkoswki metric:

gµν = ηµν + ϵhµν , ηµν = diag(−1, 1, 1, 1).

Writing the energy-momentum tensor as ϵTµν and expanding to O(ϵ), derive the
linearized Einstein equations in wave gauge

∂ρ∂ρhµν = −16πTµν , ∂µh
µ
ν = 0, (∗)

where hµν = hµν − 1
2hτ

τηµν , and indices are raised and lowered with the Minkowski
metric.
You may assume that in any coordinate basis the Ricci tensor may be written

Rσν = −1

2
gµρ∂µ∂ρgσν + ΓλτνΓ

λτ
σ + ΓλτνΓ

τ
σ
λ + ΓλτσΓ

τ
ν
λ

+
1

2
∂σΓµν

µ +
1

2
∂νΓµσ

µ − Γµλ
µΓν

λ
σ

and that the wave coordinate condition takes the form Γµ
νµ = 0.

b) Suppose hµν solves (∗). A gauge transformation generated by a vector field ξµ acts
on hµν by

hµν → h′µν = hµν + ∂µξν + ∂νξµ.

Show that h′µν will also solve (∗) if ∂ρ∂ρξ
µ = 0.

c) Consider a perturbation of the form

hµν = Hµν(x
σkσ)

where kσ is a constant 4−vector and Hµν(s) = Hνµ(s) for µ, ν = 0, . . . , 3 are
functions of a single real variable which decay as |s| → ∞.

i) Find conditions on kσ, Hµν(s) such that hµν solves (∗) for Tµν = 0.

ii) Show that by making a choice of coordinate axes, together with appropriately
chosen gauge transformations the solution can be brought to the form

hµν =


0 0 0 0
0 f+(z − t) f×(z − t) 0
0 f×(z − t) −f+(z − t) 0
0 0 0 0


where f+, f× are arbitrary functions and xµ = (t, x, y, z).

[Hint: You may wish to consider a gauge transformation generated by the vector
field ξ0 = 0, ξi =

∫ z−t
−∞ H0

i(s)ds, followed by a transformation generated by

ξ0 = −ξ3 = α
∫ z−t
−∞ Hµ

µ(s)ds, ξ1 = ξ2 = 0, for α a suitable constant.]
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4 Let (M, g) be a 4−dimensional Lorentzian manifold, and ∇ the Levi-Civita
connection.

a) Let ω be a p-form.

i) Working in a coordinate chart define the exterior derivative dω and show that
your definition does not depend on the choice of chart.

ii) Show that the exterior derivative satisfies d(dω) = 0 and d(ϕ∗ω) = ϕ∗dω, where
ϕ is a diffeomorphism.

iii) For a vector field X which generates a smooth one-parameter family of
diffeomorphisms ϕX

t , define the Lie derivative LXω in terms of ϕX
t . Deduce

that LX(dω) = d(LXω).

b) Let Tab
cd = ϵab

cd, where ϵabcd is the volume form of the spacetime. Show that
(LXT )ab

cd = 0 if and only if Xa satisfies the conformal Killing equation:

∇aXb +∇bXa = αgab∇cX
c

where α is a constant that you should determine.

You may find the following identities helpful

(LXT )ab
cd = Xe∇eTab

cd + Teb
cd∇aX

e + Tae
cd∇bX

e − Tab
ed∇eX

c − Tab
ce∇eX

d

∇aϵbcde = 0, ϵa
pqrϵbpqr = −6gab, ϵab

pqϵcdpq = −2(gacgbd − gadgbc).

c) Recall that the vacuum Maxwell equations for a 2−form F are

dF = 0, d(⋆F ) = 0

where (⋆F )ab = 1
2ϵab

cdFcd. Show that if X satisfies the conformal Killing equation

then F̃ = LXF satisfies the vacuum Maxwell equations whenever F does.
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