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1 This question concerns renormalisable N = 1 globally supersymmetric SU(3) gauge
theory with a single chiral superfield Φ in the fundamental representation of SU(3) and
with a vector superfield V = VaTa where Ta are generators of SU(3) in the fundamental
representation. Strictly speaking, this theory possesses a gauge anomaly, but we shall
ignore it here. The supersymmetry generators Qα, Qα̇ have representations Qα, Qα̇ when
acting on a function on superspace and we shall denote SUSY covariant derivatives by Dα,
Dα̇.

(i) Under a SUSY transformation, a general superfield S transforms as

S(xµ, θα, θ̄α̇) → exp[i(ϵQ+ ϵ̄Q)]S(xµ, θα, θ̄α̇),

where ϵα and ϵ̄α̇ are Grassman-valued SUSY transformation parameters. From this,
find the explicit forms of Qα, Qα̇ as differential operators. You may assume any
properties of the super-Poincaré algebra from lectures, provided that they are clearly
stated.

(ii) What is the defining property of a vector superfield Va?

(iii) What is the defining property of a chiral superfield Φ?

(iv) A generalised SU(3) gauge transformation is given by Φ → exp(−2iΛ)Φ, where
Λ = ΛaTa. Give the mass dimension of the superfields Λa and state clearly any
restrictions on on their nature.

The SUSY SU(3) field-strength chiral superfield is

Wα = −1

8
D2

(exp(−2V )Dα exp(2V )) .

(v) Write down the theory’s Lagrangian density in terms of superspace integrals involving
functions of Va, Φ and Wα.

(vi) Assuming generalised SU(3) gauge invariance of the standard Kähler potential, relate
V and V ′ where V → V ′ = V ′

aTa under a finite generalised gauge transformation.

(vii) Using the relation you derived in (vi), show that the entire Lagrangian density is
invariant under a generalised gauge transformation.
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2 Describe why theoretical arguments lead us to expect that the order of magnitude
of sparticle masses is a few TeV or less. Your answer should include Feynman diagrams
and order of magnitude estimates.

Define R−parity in terms of spin s, baryon number B and lepton number L.

Write down the R−parity violating superpotential of the MSSM WRPV [you may
leave gauge indices suppressed].

Draw a Feynman diagram to illustrate that two of the baryon/lepton number
violating terms in WRPV can induce proton decay into a pion and an invisible particle. Is
the invisible particle a neutrino or an anti-neutrino? Which family can it be from? What
is the electric charge of the pion?

By dimensional arguments, estimate the rough order of magnitude of the decay
rate of the proton via this channel in terms of the Yukawa coupling constants in WRPV

assuming that SUSY particle masses are 10 TeV.

The experimental lower bound on the proton lifetime through this channel is
approximately

τp→µ+π0 > 1034 years.

Use this and dimensional arguments to determine an order of magnitude upper bound on
the product of the two Yukawa couplings that give rise to proton decay above.

Show that R-parity forbids all of the terms in WRPV . Now impose R−parity on the
theory.

In the MSSM Lagrangian, there are direct couplings between a (non-gauge) particle,
its anti-particle, an SU(2)L W−boson and a gluon. Which part of the Lagrangian density
does this term come from? Draw a Feynman diagram for it and write its Feynman rule.

[ In natural units, 1 second is of order 1024 GeV−1 and the mass of a proton is 1
GeV. ]

Part III, Paper 307 [TURN OVER]



4

3 The generators of the Poincaré group Mµν and P σ satisfy

[Mµν , P σ] = i(Pµηνσ − P νηµσ).

Define the Pauli-Lubjanski operator Wµ in terms of Mµν and Pµ.

Write down a general Poincaré transformation on a left-handed spinor field ψα(x)
in terms of the left-handed spinor representation of the Lorentz group algebra

σµν =
i

4
(σµσ̄ν − σν σ̄µ) ,

which satisfies

σµν =
1

2i
ϵµνρσσρσ.

In terms of (SU(2)L, SU(2)R) representation spaces of the Lorentz algebra, ψ ∼
(12 , 0). Write down (12 , 0)⊗ (12 , 0) in terms of irreducible (SU(2)L, SU(2)R) representation
spaces. Show this explicitly by the decomposition of ψαχβ, where χ ∼ (12 , 0).

Write down all of the commutators or anti-commutators of the super-Poincaré
algebra which involve the supersymmetry generators Qα and/or Q̄α̇.

(i) Defining Bµ =Wµ − 1
4(Q̄σ̄µQ), calculate [Bµ, Pρ].

(ii) Defining Cµν = BµPν −BνPµ, calculate [Cµν , Pρ].

(iii) Compute [Q̄σ̄µQ, Qα].

(iv) Compute [Bµ, Qα].

(v) Compute [Cµν , Qα].

(vi) Defining the Lorentz scalar superspin operator

C̃2 = CµνC
µν ,

write down the implied commutator with Mµν . Thus, demonstrate that C̃2 is a
Casimir of the super-Poincaré algebra.
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