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This question concerns the classical motion of the bosonic string in R1,D−1. The
Polyakov action for a string with embedding coordinate Xµ(σ, τ) and world-sheet metric
gαβ(σ, τ) is,

SP = −T

2

∫
Σ
d2σ

√
−g gαβ∂αX · ∂βX,

where T = 1/(2πα′) is the string tension.

(a) Derive the classical Virasoro constraint on string motion and the equation of motion
for the string in conformal gauge gαβ = ηαβ. Determine the possible boundary conditions
for an open bosonic string.

(b) Show that the action is invariant under spacetime translations and Lorentz trans-
formations and demonstrate the existence of corresponding conserved currents,

Pα
µ = T∂αXµ and Jα

µν = Pα
µXν − Pα

ν Xµ.

Write down the corresponding conserved Noether charges Pµ and Jµν for the open string.

(c) The open string with Neumann boundary conditions in all directions has a mode
expansion,

Xµ(σ, τ) = xµ + α′pµτ + iα′
∑
n̸=0

1

n
αµ
ne

−inτ cos(nσ).

Evaluate the charges Pµ and Jµν in terms of the variables xµ, pµ and αµ
n with n ∈ Z,

n ̸= 0.

(d) Now fix the residual gauge invariance by setting X0(σ, τ) = Aτ for an undetermined
constant A. Write down a solution for string motion corresponding to a stretched open
string rigidly rotating in the plane with coordinates x = X1 and y = X2. You should
check explicitly that your solution obeys the string equation of motion and the Virasoro
constraint.

Determine the mass M with M2 = −PµP
µ and angular momentum J = J12 of your

solution in terms of A and T .
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A free scalar field X(z, z̄) in two dimensions has action,

S =
1

2π

∫
d2z ∂zX∂̄zX.

In this question we adopt the conventions from the lectures for complex coordinates
z = σ + iρ. In particular ∂z and ∂̄z denote partial derivatives with respect to z and
z̄ considered as independent variables and d2z = 2dσdρ.

(a) Using either operator or path integral methods, calculate the Euclidean two-point
function, ⟨∂zX(z)∂wX(w)⟩.

(b) A normal-ordered holomorphic stress-energy tensor for the theory is defined by,

T (z) = − : ∂zX(z)∂zX(z) :

= − lim
δ→0

[
∂zX

(
z +

1

2
δ

)
∂zX

(
z − 1

2
δ

)
−
〈
∂zX

(
z +

1

2
δ

)
∂zX

(
z − 1

2
δ

)〉]
.

Using Wick’s theorem (which you need not prove), compute the singular terms in the
product T (z)∂wX(w).

(c) Consider a conformal transformation z → w(z), z̄ → w̄(z̄) under which the scalar
field transforms as,X(z, z̄) → X̃(w, w̄) = X(z, z̄) and let w(n)(z) denote the n’th derivative
dnw/dzn. With reference to its properties under this transformation, explain what is meant
by a primary operator of conformal weight (h, h̃). Give an example of a primary operator
in this theory and state its conformal weight.

(d) Rewrite T (z) in terms of the transformed stress-energy tensor,

T̃ (w) = − : ∂wX̃(w)∂wX̃(w) :,

thereby showing that,

T̃ (w) =

(
dw

dz

)−2

[T (z)−R(w; z)]

for a function R(w, z) depending on w(z) and its derivatives w(n)(z) for n = 1, 2, 3 which
you should determine. Is T (z) a primary operator? Justify your answer.
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(a) Starting from the Polyakov path integral, describe the derivation of the tree-level
scattering amplitude for m tachyons of the closed bosonic string in the form,

A(m,0)(p1, p2, . . . , pm) = gm−2
s δ(26)

(
m∑
i=1

pi

)∫ ∏m
i=1 d2zi

Vol [SL(2,C)/Z2]

∏
j<l

|zj − zl|α
′pj ·pl . (∗)

(b) Consider the hard scattering limit where sij = −(pi+pj)
2 → ∞ with all ratios sij/skl

held fixed. By writing the product appearing in integrand of (∗) as exp(f({zi}, {z̄i}), for
an appropriately chosen function f , and looking for stationary points where ∂f/∂zi =
∂f/∂z̄i = 0 for i = 1, 2, . . . n, obtain a set of algebraic equations for the insertion points
zi which determine the asymptotics of the scattering amplitude in this limit.

(c) For the special case m = 4, use SL(2,C) invariance to fix the positions of z1, z2
and z4 in (∗) to convenient values and solve the equations obtained in part b) to find the
stationary value of z = z3. Hence or otherwise show that,

A(m,0)(p1, p2, p3, p4) ∼ gm−2
s δ(26)

(
m∑
i=1

pi

)
exp

[
−α′

2
(s log s+ t log t+ u log u + . . .)

]
,

where s = s34, t = s13 and u = s23 and the dots indicate terms in the exponent which
grow slower than s log s in the hard scattering limit s, t, u → ∞.
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A two-dimensional non-linear σ-model for scalar fields corresponding to maps,

X : Σ → M,

has action,

S =
1

4πα′

∫
Σ
d2σ

√
ggαβGµν(X)∂αX

µ∂βX
ν ,

where gαβ and Gµν are Riemannian metrics on the two-dimensional spacetime Σ and the
target space M respectively.

(a) Explain briefly the relevance of this model for string theory and state without proof
necessary conditions for M to be a consistent background for the bosonic string.

(b) Consider the case where Σ is R2 with a flat metric and M is a two-sphere S2 of
radius R with the standard round metric,

ds2 = GµνdX
µdXν = R2

(
dθ2 + sin2(θ)dϕ2

)
,

where θ ∈ [0, π] and ϕ ∈ [0, 2π) are the usual polar and azimuthal angles on the sphere
respectively. Choosing a complex coordinate Z = tan(θ/2) exp(iϕ) on the sphere, show
that the action can be put in the form,

S =
1

λ2

∫
Σ
d2σ

∂αZ∂αZ̄(
1 + ZZ̄

)2 ,
where λ is a dimensionless coupling constant which you should determine.

(c) Formulate perturbation theory in powers of λ by expanding the field in fluctuations
around the North Pole, at Z = 0, setting Z = λδZ. In particular, you should give
Feynman rules for the propagator of the fluctuation field δZ and for its leading interaction
vertex. With brief justification, identify a divergent Feynman diagram which contributes
to the renormalisation of the metric Gµν and evaluate it in a regularisation scheme of your
choice. Briefly discuss the implications of your result for string propagation on a spacetime
of the form M = S2 ×N where N is arbitrary. [In this question, you are not expected to
accurately determine the overall normalisation of the contribution you evaluate and you
need not account for other possible renormalisations (eg wavefunction renormalisation).]
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