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1 Consider, in four dimensions, a massless Dirac spinor ψ coupled to a Maxwell gauge
field Aµ via the following Lagrangian

L = iψ̄ /Dψ − 1

4
FµνF

µν − iλψ̄ [γµ, γν ]Fµν ψ .

Here Fµν = ∂µAν − ∂νAµ, /D = γµ(∂µ + ieAµ), γ
µ are the gamma matrices, and λ and e

are real coupling constants.

(a) Are the coupling constants λ and e relevant, marginal or irrelevant? Explain your
answer.

(b) State how ψ(x), ψ̄(x), and Aµ(x) transform under a Lorentz transformation. Briefly
explain why the Lagrangian is Lorentz invariant. Show that L is real up to total
derivatives.

(c) Derive the equations of motion of the fields.

(d) Show that the theory is invariant under a local and global U(1) symmetry. Derive the
appropriate Noether current jµ and charge Q. Show explicitly that Q is conserved
on-shell. Compare jµ with the source appearing in Maxwell’s equation, and comment
on any terms they differ by.

(e) Consider the transformation ψ → eiαγ5ψ with α a constant and γ5 = iγ0γ1γ2γ3.
Under what condition is this a symmetry of L? Does the same condition apply if the
fermion is massive? Is it possible to make this symmetry local by suitable choices of
e and λ? Explain your answer.
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2

(a) Consider a real vector field V µ(x) in four-dimensional Minkowski space, with
Lagrangian

L = a (∂µVν)(∂
µV ν) + b (∂µVν)(∂

νV µ) + c (∂µV
µ)(∂νV

ν) +m2V µVµ ,

where a, b, c, and m are real constants.

(i) Show that L can be simplified, up to total derivatives, to

L = ã Vν∂µ∂
µV ν + b̃ V ν∂ν∂µV

µ +m2V µVµ , (⋆)

with ã, b̃ real constants.

(ii) Using (⋆), derive the equations of motion for V µ.

(iii) Using Noether’s theorem, construct the energy-momentum tensor associated to
this Lagrangian, and give an expression for the Hamiltonian.

(iv) Consider the case with b̃ = 0. Show that for any value of ã, the energy of the
system is not positive definite.

(v) Assuming ã > 0, find a relationship between b̃ and ã such that the energy of
the system is positive definite on-shell, up to total derivatives. Show that for
this choice the equations of motion of the vector field imply that ∂µV

µ = 0.

(b) Another way to constrain ã and b̃ to their physical values, is as follows. A general
vector field can always be decomposed as

Vµ = Aµ + ∂µπ ,

where Aµ(x) satisfies ∂µA
µ = 0 (transverse condition), and π(x) is a scalar field.

(i) Write the Lagrangian (⋆) in terms of Aµ and π. Derive the equations of motion
for Aµ and π.

(ii) Show that the propagator of π, up to a numerical factor, is

⟨0|Tπ(x)π(y)|0⟩ =
∫

d4k

(2π)4
i

m2

(
1

k2
− c̃

c̃k2 −m2

)
e−ik·(x−y) ,

where c̃ is a constant that you should specify. [Hint: You may use without proof
the fact that the propagator is a Green’s function.]

Show that the term involving c̃ vanishes if ã and b̃ are related as in part (a)(v)
of this question.
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3 In this question we will consider a four-dimensional theory consisting of a massive
scalar field ϕ(x) and a massive Dirac spinor field ψ(x), and the effects of two different
interactions between them. The free part of the Lagragian is

L0 =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 + ψ̄(i/∂ −m)ψ .

Here M and m are the masses of ϕ(x) and ψ(x), respectively. We are using the notation
/∂ = γµ∂µ and γµ are the gamma matrices.

(a) Consider the interacting theory with Lagrangian L0 + L1, with

L1 = −λϕψ̄ψ ,

with λ a coupling constant.

(i) Write down the classical equations of motion. State, without derivation, the
three Schwinger-Dyson equations for this theory.

(ii) Following the LSZ approach, derive the S-matrix for the decay ϕ → ψψ̄ by
defining asymptotic states and identifying the appropriate correlation function
that enters in the S-matrix.

(iii) To leading order in the coupling, evaluate the connected contribution to the
correlation function appearing in ϕ → ψψ̄ by using the Schwinger-Dyson
equations. With this, evaluate the S-matrix element for this process to leading
order, and identify the corresponding amplitude As,s′ .

(iv) Compute the spin-summed/averaged squared matrix element,

P :=
1

4

2∑
s,s′=1

|As,s′ |2 ,

where s and s′ are the spins of the final particles.

(b) Now consider instead the interacting theory with Lagrangian L0 + L2, with

L2 = −igϕψ̄γ5ψ ,

with g a coupling constant and γ5 = iγ0γ1γ2γ3.

What is the S-matrix for ϕ→ ψψ̄? You do not need to derive the result, just state
the appropriate modification of your answer in part (a)(iii) of this question.

Evaluate the spin-summed/averaged squared matrix element in this case. In an
experiment, would you be able to detect the difference between the effect of the two
interaction terms L1 and L2?

Useful identities: You may use without proof the following identities related to the
mode expansion of free fields:

ϕ(x) =

∫
d3p

(2π)3
1√
2ω̃p⃗

[
ap⃗ e

−ip·x + a†p⃗ e
ip·x

]
,

ψ(x) =

∫
d3p

(2π)3
1√
2ωp⃗

2∑
r=1

[
brp⃗ u

r(p⃗)e−ip·x + crp⃗
† vr(p⃗) eip·x

]
,
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with ω̃2
p⃗ =M2 + p⃗2 and ω2

p⃗ = m2 + p⃗2. Some identities for spinors are

(/p−m)us(p⃗) = 0 ,

(/p+m)vs(p⃗) = 0 ,

2∑
s=1

us(p⃗)ūs(p⃗) = /p+m,

2∑
s=1

vs(p⃗)v̄s(p⃗) = /p−m.

us†(p⃗)us
′
(p⃗) = vs†(p⃗)vs

′
(p⃗) = 2ωp⃗ δ

ss′ ,

ūs(p⃗)us
′
(p⃗) = −v̄s(p⃗)vs′(p⃗) = 2mδss

′
,

us†(p⃗)vs
′
(−p⃗) = vs†(p⃗)us

′
(−p⃗) = 0 .
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4 Suppose that we have a massive scalar field in four dimensions with Lagrangian

L =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 .

Consider the field redefinition

Φ(x) = φ(x) + λφ(x)2 ,

where λ is a real constant. The scattering amplitudes for particles created by Φ or φ
should be unchanged if we make this field redefinition. To check that a field redefinition
does not change physical observables, do the following:

(a) Work out the Lagrangian in terms of the redefined field φ. Identify the free and
interactions terms in the Lagrangian.

(b) For the Lagrangian in terms of φ, write, without derivation, the corresponding
Feynman rules in momentum space for the S-matrix.

(c) Consider the scattering process φφ → φφ. Draw the connected Feynman diagrams
that contribute to the S-matrix to leading order in λ.

(d) Based on your answers to part (c) and (b), evaluate the connected contribution to
φφ→ φφ scattering at leading order in λ. Comment on your final answer.

[Hint: In part (b), you may use the fact that if three scalar fields interact via

Lint = λϕ1(∂µϕ2)(∂
µϕ3) ,

then the rule for the vertex is

ϕ1

ϕ2

ϕ3

k1

k2

k3

= (iλ)(ik2)µ(ik3)
µ(2π)4δ4(k1 − k2 − k3) .

Consider carefully how this can be applied when the three scalars are identical.]

END OF PAPER

Part III, Paper 301


