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(a) State the log-sum inequality.

(b) Prove that the relative entropy D(P∥Q) between two probability mass functions
P,Q on the same finite alphabet A is jointly convex in (P,Q).

(c) Recall the notation De(P∥Q) = (loge 2)D(P∥Q). Let P,Q be two arbitrary
probability mass functions on the same finite alphabet A. Show that, for any function
g : A → R

De(P∥Q) ⩾ E[g(X)]− loge E[eg(Y )],

where X and Y have probability mass functions P and Q, respectively.

(d) Show that, if D(P∥Q) < ∞ then, in fact,

De(P∥Q) = sup
g

{
E[g(X)]− loge E[eg(Y )]

}
,

where the supremum is over all functions g : A → R.

Part III, Paper 224



3

2

(a) State Sanov’s theorem, taking care to include all the necessary definitions.

(b) Suppose {Xn} is a sequence of independent and identically distributed (i.i.d.)
random variables with values in a finite alphabet A and with common probability
mass function Q. Let P ̸= Q be another probability mass function on A, and suppose
both P and Q have full support.

Show that the probability P(Pn(Xn
1 ) ⩾ Qn(Xn

1 )) decays exponentially with n, i.e.,

lim sup
n→∞

1

n
logP(Pn(Xn

1 ) ⩾ Qn(Xn
1 )) ⩽ −C(P,Q),

and identify the exponent C(P,Q) as the solution to an optimization problem
involving relative entropies. Explain why C(P,Q) is strictly positive.

(c) Let {Pθ ; θ ∈ Θ}, be a finite parametric family of distinct probability mass functions
Pθ of full support on a finite alphabet A, with Θ = {θ1, θ2, . . . , θk}. Suppose {Xn}
are i.i.d. with common probability mass function Pθ∗ for some θ∗ ∈ Θ, and let

θ̂n = argmax
θ∈Θ

Pn
θ (X

n
1 ),

denote the maximum likelihood estimate, with ties broken arbitrarily.

Show that the “error probability” P(θ̂n ̸= θ∗) decays exponentially to zero, i.e.,

lim sup
n→∞

1

n
logP(θ̂n ̸= θ∗) ⩽ −C∗(Θ).

Give a formula for C∗(Θ) again in terms of relative entropies, and explain why it is
strictly positive.
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Let X be a random variable with probability mass function (PMF) P on the
alphabet A = {0, 1, . . . ,m − 1}. Let d(x, y) = I{x ̸=y} denote the Hamming distance
between x, y ∈ A. For d ∈ (0, 1), we will consider the minimisation problem

R(d) = inf
(X,Y ):E[d(X,Y )]⩽d

I(X;Y ), (1)

where the infimum is over all pairs of random variables (X,Y ), such that both X and Y
take values in A, X has PMF P , and E[d(X,Y )] ⩽ d.

(a) For d ∈ (0, 1), let

ϕ(d) = sup

{
H(Q) : PMFs Q on A s.t.

m−1∑
i=1

Q(i) ⩽ d

}
.

Show that ϕ(d) is a concave function of d.

(b) For d ∈ (0, 1), let (X,Y ) denote any pair of random variables satisfying the
constraints in the minimisation in (1). Show that

I(X;Y ) ⩾ H(X)− ϕ(d).

Carefully justify all your steps. Hint. It may be helpful to consider the values
dy = E[d(X,Y )|Y = y] for all y ∈ A.

(c) Show that, if X is uniformly distributed on A, then R(d) = logm − ϕ(d). Hint.
Create a pair (X,Y ) by letting Y be uniformly distributed on A and then selecting
an appropriate conditional distribution for X given Y .
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(a) State both the direct and converse parts of the codes-distributions correspondence.

(b) Using the result in (a) show that, for any random variable X with values in a finite
alphabet A and any prefix-free code C on A with length function L:

E[L(X)] ⩾ H(X).

(c) Consider the collection of all, not necessarily prefix-free, variable-rate codes C on a
finite alphabet A. These codes are simply invertible maps C from A to the set B∗

of all finite-length binary strings, including the empty set:

B∗ = {∅, 0, 1, 00, 01, 10, 11, 000, 001, . . .}.

(i) Suppose X is a random variable with values in A. For R ⩾ 0, consider
the problem of determining the code that achieves the optimal “excess-rate
probability”

inf
C

P(L(X) ⩾ R),

where the infimum is over all variable-rate codes C with corresponding length
function L.

Argue that, regardless of the value of R, this infimum is achieved by a
code (C∗, L∗) that operates as follows: First all x ∈ A are ordered by
decreasing probability, and then each x is assigned a binary description C∗(x)
in lexicographical order, so that the kth most likely x has L∗(x) = ⌊log k⌋.

(ii) Suppose X has probability mass function P on A = {1, 2, . . . ,m}, such that
P (1) ⩾ P (2) ⩾ · · · ⩾ P (m). Show that, for all x ∈ A:

L∗(x) ⩽ − logP (x).

(iii) Suppose X has probability mass function P on an arbitrary finite alphabet A,
where P does not necessarily have ordered probabilities. Show that, for any R,

P(L∗(X) ⩾ R) ⩽ P(− logP (X) ⩾ R),

and that:
E[L∗(X)] ⩽ H(X).

Compare this last bound with the result you proved in part (b).
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