
MAMA/221, NST3AS/221, MAAS/221

MAT3

MATHEMATICAL TRIPOS Part III

Friday 13 June 2025 9:00 am to 11:00 am

PAPER 221

CAUSAL INFERENCE

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury tag
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

1 Causal DAGs and multiple regression

(a) Consider a linear structural equation model with respect to a directed acyclic graph
(DAG). State Wright’s path tracing rule and define the total causal effects in terms
of path coefficients.

(b) Consider the following DAG that describes the causal relationship between Y
(infant health score), X3 (birth weight), X2 (maternal smoking during pregnancy),
X1 (maternal education), and U (unmeasured genetic predisposition). Assume
X1, X2, X3 all have variance 1, and assume (X1, X2, X3, Y, U) satisfies a linear
structural equation model with respect to this DAG.

X1

X2

X3

Y

U

Consider the following linear regression problems, assuming an intercept term is
always included. Among the least-squares regression coefficients in each problem
(for example, there are three coefficients in problem (vii)), which have a causal
effect interpretation? Justify your answer.

(i) Regress Y on X1.

(ii) Regress Y on X2.

(iii) Regress Y on X3.

(iv) Regress Y on X1 and X2 jointly.

(v) Regress Y on X1 and X3 jointly.

(vi) Regress Y on X2 and X3 jointly.

(vii) Regress Y on X1, X2 and X3 jointly.

[Hint: if you believe a regression coefficient identifies a causal effect, specify whether
it reflects a total causal effect, a total causal effect given some random variable(s),
or a direct causal effect. Otherwise, briefly explain why the coefficient does not have
a causal interpretation.]
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2 Z-estimator of the ATE
Consider a Bernoulli trial where treatment assignment Z is randomized with

P (Z = 1) = p⋆ for some p⋆ ∈ (0, 1). The observations {Yi, Zi}ni=1 are i.i.d. across
individuals. Assume that E[Y 2|Z = z] is bounded for z = 0, 1.

Define τ⋆ = E
[
E[Yi|Zi = 1] − E[Yi|Zi = 0]

]
. Compare the following inverse

probability weighted (IPW) estimators:

τ̃ =
1

n

n∑
i=1

(
YiZi

p⋆
− Yi(1− Zi)

1− p⋆

)
,

τ̂ =
1

n

n∑
i=1

(
YiZi

p̂
− Yi(1− Zi)

1− p̂

)
,

where p̂ = 1
n

∑n
i=1 Zi.

(a) Derive the asymptotic distribution of τ̃ as n → ∞.

(b) By writing (p̂, τ̂) as a Z-estimator (the solution to a system of estimating equations
that you should specify), show that τ̂ is a consistent and asymptotically normal

estimator for τ⋆. [Hint: The inverse of a 2 × 2 matrix is given by:

(
a b
c d

)−1

=

1
ad−bc

(
d −b
−c a

)
. ]

(c) Show that using τ̂ instead of τ̃ leads to an efficiency improvement, that is, the
asymptotic variance of τ̂ is less than or equal to that of τ̃ .
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3 Causal DAG and conditional independence
An epidemiologist is interested in the effect of a drug (A) on the risk of heart attack

(Y ). The drug works partly directly, and partly indirectly via acting as a muscle relaxant
(M) which in turn affects (Y ). The muscle relaxing property M may also have some side
effects (S).

A doctor’s recommendation (Z) increases the chance of the drug being taken. The
propensity of the patient to take the treatment is also a function of their age (D), which
will in turn affect the muscular composition of their heart (C). It is known that muscular
composition of the heart influences muscle relaxation (M).

In addition, both the likelihood of taking the treatment A and of having a heart
attack Y are dependent on the patient’s sex (G), and (Y ) is also influenced by the patient’s
weight (W ).

(a) Draw a minimal causal diagram that encodes all scientific assumptions above.

(b) Which of the following conditional independences hold under the graph you drew?
If you believe a conditional independence holds, you need to justify your answer.
Otherwise, give an open path given the corresponding conditioning set.

(i) D ⊥⊥ G;

(ii) D ⊥⊥ Z | A;

(iii) Z ⊥⊥ Y | A,G,D;

(iv) C ⊥⊥ A | D.

(c) Suppose we consider only the subset of patients who are known to have suffered from
the side effects of the muscle relaxation effect (that is, S = 1). How does this change
your answers for (b)?

(d) Recall that the undirected moral graph Gm of a DAG G is obtained by first adding
undirected edges between all pairs of vertices that have a common child and then
erasing the direction of all the directed edges.

We say that the distribution of a random vector XXX = (X1, ..., Xp)
⊤ factorizes

according to a DAG G = (V = [p], E) if its density function f(xxx) satisfies

f(xxx) =

p∏
j=1

fj|pa(j)(xj | xpa(j)),

where pa(j) is the parent set of j in G. Show if the distribution of a random
vectorXXX = (X1, ..., Xp)

⊤ factorizes according to a DAG G, it must satisfy the global
Markov property with respect to Gm. [You may assume f(xxx) > 0 and use the
Hammersley–Clifford Theorem without proof.]
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4 Causal identification and doubly robust estimation of conditional average
treatment effect (CATE)

Consider a standard observational study with a binary treatment Z ∈ {0, 1},
covariates X = (X1, X2), where X1 denotes a discrete random variable indicating the
subgroups of interest and X2 contains the rest of the covariates, and some outcome of
interest Y . Assume the propensity score e(X) = P (Z = 1 | X) satisfies positivity
(0 < e(X) < 1), and that strong ignorability (Z ⊥⊥ {Y (1), Y (0)} | X) and SUTVA
hold.

(a) The parameter of interest is the subgroup causal effect:

τ(x1) = E[Y (1)− Y (0)|X1 = x1]

(i) Show that τ(x1) can be identified from observed data using outcome modeling:

τ(x1) = E
[
E[Y |Z = 1, X]|X1 = x1

]
− E

[
E[Y |Z = 0, X]|X1 = x1

]
(ii) Show that τ(x1) can be identified from observed data using propensity scores:

τ(x1) = E
[
1(X1 = x1)ZY

e(X)
− 1(X1 = x1)(1− Z)Y

1− e(X)

]/
pr(X1 = x1)

(b) More generally, define
τ(X) = E[Y (1)− Y (0)|X],

τ̃dr(X) = µ̃dr
1 (X)− µ̃dr

0 (X),

and

µ̃dr
1 (X) = E

[Z(
Y − µ1(X,β1)

)
e(X;α)

+ µ1(X,β1)
∣∣X]

,

µ̃dr
0 (X) = E

[(1− Z)
(
Y − µ0(X,β0)

)
1− e(X;α)

+ µ0(X,β0)
∣∣X]

.

Here, µ1(X,β1) and µ0(X,β0) are the working models for the conditional mean of
the outcome under Z = 1 and Z = 0, respectively, with parameters β1 and β0.
Similarly, e(X,α) is a working model for the propensity score, indexed by α. For
z = 0, 1, µz(X) = E[Y |Z = z,X].

Show that τ̃dr(X) = τ(X) if either

(i) e(X,α) = e(X); or

(ii) µ1(X,β1) = µ1(X) and µ0(X,β0) = µ0(X).

END OF PAPER
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