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1 Consider a simplified three-rung local distance ladder for the determination of
the Hubble Constant. This involves using parallax and two types of standard candles,
Cepheid stars and supernovae, as distance indicators. The absolute magnitudes of Cepheid
stars (after correcting for their period-luminosity relation), are independent draws from a
Gaussian population distribution, i.e. M∗

c ∼ N(M∗
0 , σ

2
∗), with unknown population mean

M∗
0 and known population variance σ2

∗. The absolute magnitudes of the supernovae are
independently drawn from a Gaussian population distribution, Ms ∼ N(MSN

0 , σ2
SN) with

unknown population mean MSN
0 and known population variance σ2

SN.

In the first rung, we measure the parallax of stars within a nearby galaxy, the
Large Magellanic Cloud (LMC), to determine an unbiased estimate µ̂LMC of the LMC
distance modulus with a Gaussian measurement error with variance σ2

LMC. (The distance
modulus for a distance d is defined as µ = 25 + 5 log10(d Mpc−1), where Mpc is a
megaparsec.) Within the LMC, we also observe NLMC Cepheid stars. We measure the
apparent magnitude mLMC

c for each Cepheid star (corrected for the period-luminosity
relation) labelled c = 1, . . . , NLMC, with negligible measurement error.

In the second rung, we observe Cepheid stars in the same galaxies in which we
observe Type Ia supernovae. In each of G calibrator galaxies, labelled g = 1, . . . , G,
we observe NCeph Cepheid stars and measure each one’s apparent magnitudes mg

c for
c = 1, . . . , NCeph, with negligible measurement error. In each calibrator galaxy g, we also
measure the apparent magnitude mg

SN of a supernova, with negligible measurement error.

In the third, most distant, rung, we only observe Type Ia supernovae. They are
distant enough that they participate in the smooth, overall expansion of the Universe. We
measure the apparent magnitude mi

SN of each supernova (SN), labelled i = 1, . . . , NSN,
with negligible measurement error. Each SN i in this set follows the Hubble law, the linear
relation between their recession velocities vi = czi and their distances di: di = c zi/H0,
where c is the speed of light and zi is the redshift. Assume the redshift is measured
exactly for each supernova in this set. In this set, only one supernova is observed in each
galaxy, and every supernova is independent. The units of the Hubble constant H0 are
km s−1Mpc−1. Define h = H0/(100 km s−1 Mpc−1), θ = 5 log10 h, and α = 5/ ln 10. In
each part below, show all steps.

(a) In the first rung, define the statistic Ŝ1 ≡ m̄LMC − µ̂LMC, where

m̄LMC =
1

NLMC

NLMC∑
c=1

mLMC
c

is the sample mean of the apparent magnitudes of Cepheids observed in the LMC.
Derive the sampling distribution of Ŝ1 in terms of the parameters. What is its
expectation value and variance?

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b) In the second rung, define the statistics Ŝg
2 ≡ mg

SN − m̄g, where

m̄g =
1

NCeph

NCeph∑
c=1

mg
c

is the sample mean of the apparent magnitudes of Cepheids observed in galaxy g.
Derive the sampling distribution of Ŝg

2 in terms of the parameters. What is its
expectation value and variance?

(c) In the third rung, derive the sampling distribution of the statistics Ŝi
3 = mi

SN−f(zi)
in terms of the parameters, where f(z) ≡ 25 + 5 log10(cz/(100 km s−1)).

(d) Let ∆M ≡ MSN
0 − M∗

0 and M ≡ MSN
0 − θ. Derive the likelihood function of

the unknown parameters (M∗
0 ,∆M,M), up to a multiplicative constant, using the

statistics of the observed data over all three rungs simultaneously, as defined in parts
(a), (b), and (c) above.

(e) Derive the maximum likelihood estimators (M̂∗
0 ,∆M̂,M̂), checking 1st and 2nd-

order conditions. Compare the variances of these estimators to the Cramér-Rao
bound. What is the MLE θ̂ for θ? Derive the bias and variance σ2

θ of θ̂.

(f) What is the maximum likelihood estimator ĥ for h? Approximate the fractional
variance Var[ĥ/h] to lowest order in σ2

θ . Suppose that with continued observations,
the number of Hubble flow SNe, NSN, the number of calibrator galaxies, G, and
the number of Cepheids observed in the LMC, NLMC, become arbitrarily large.
What is the dominant remaining source of uncertainty in the estimate of the Hubble
Constant?
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2 Consider the linear regression of the quasar X-ray spectral index vs. bolometric
luminosity in the presence of measurement error in both quantities and intrinsic dispersion.
Consider the following probabilistic generative model,

ξi ∼ N(µ, τ2)

ηi| ξi ∼ N(α+ βξi, σ
2)

xi| ξi ∼ N(ξi, σ
2
x)

yi| ηi ∼ N(ηi, σ
2
y),

where all random draws are independent. The astronomer measures values D = {xi, yi},
which are noisy measurements of the true luminosity ξi and the true spectral index ηi of
each quasar. The measurement errors are independent with known variances (σ2

x, σ
2
y), for

N independent quasars, labelled i = 1, . . . , N .

(a) Write down the joint distribution P (yi, xi, ηi, ξi|α, β, σ2, µ, τ2) for a single quasar.

(b) Derive the observed data likelihood function for all the quasars:

L(α, β, σ2, µ, τ2) =

N∏
i=1

P (yi, xi|α, β, σ2, µ, τ2).

Show all steps and maximally simplify.

(c) Adopt non-informative priors and write down the posterior probability density
P (α, β, σ2, µ, τ2| D) up to a constant. Describe an MCMC algorithm that will
generate samples from the posterior density. Show that this algorithm respects
detailed balance with the posterior density as the stationary distribution.

(d) Consider the following factorisation of the individual-quasar observed-data likeli-
hood:

P (yi, xi|α, β, σ2, µ, τ2) = P (yi|xi;α, β, σ2, µ, τ2)× P (xi|α, β, σ2, µ, τ2).

Derive explicitly the two densities on the right-hand side. Suppose the population
distribution of the latent (true) independent variables {ξi} is much wider than their
individual measurement uncertainties σx. If τ ≫ σx, show that the full-sample
likelihood factors as

L(α, β, σ2, µ, τ2) ≈ L1(α, β, σ
2)× L2(µ, τ

2),

so that the estimation of the regression parameters (α, β, σ2) decouples from the
estimation of the latent distribution of the independent variables. Find L1(α, β, σ

2)
and L2(µ, τ

2). What are the maximum likelihood estimators for µ, τ2 ?
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3 Consider a quasar whose stochastic brightness over time y(t) can be modelled as a
realisation of a Gaussian process,

y(t) ∼ GP(µ, k(t, t′)),

with prior mean level µ and a symmetric, stationary covariance kernel

k(t, t′) = exp(−|t− t′|/τ)

where τ > 0 is a characteristic timescale. An astronomer has measured the brightness of
the quasar at known times t1 and t2 = t1 +∆t, where ∆t > 0 is the known observational
cadence, yielding y1 ≡ y(t1) and y2 ≡ y(t2) with negligible measurement error. Denote
the kernel values for indexed times as Rij ≡ k(ti, tj) and let R ≡ k(0, 0) and x ≡ ∆t/τ .
In all parts below, show all steps.

(a) Suppose µ and τ are known. We wish to predict the quasar’s brightness y3 = y(t3)
at a future third time t3 = t2+∆t. Derive and fully simplify the posterior predictive
distribution P (y3| y2, y1), and derive the posterior predictive mean and variance. Is
y3 conditionally independent from y1 given y2? Justify your answer.

(b) Derive and fully simplify the limiting values of the posterior predictive mean and
variance of y3 given the observed data as ∆t/τ → ∞.

(c) An astronomer now additionally observes y3 = y(t3) without measurement error.
Derive and fully simplify an expression for the likelihood function P (y| t, µ, τ), where
y = (y1, y2, y3)

T and t = (t1, t2, t3)
T , in the form of a product of three univariate

probability densities. Assuming τ is known and µ is unknown, derive and fully
simplify the maximum likelihood estimator µ̂ for µ. Is µ̂ unbiased? Compute the
variance of this estimator in the cases of ∆t/τ → 0 and ∆t/τ → ∞. Justify your
answers.
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4 Consider two different, independent experiments, A and B, for estimating a scalar
cosmological parameter θ. Experiment A has a vector of nuisance parameters α and yields
dataset DA. Its likelihood function is denoted LA(θ,α) ≡ P (DA| θ,α). Experiment B has
a vector of nuisance parameters β and yields an independent dataset DB. Its likelihood
function is denoted LB(θ,β) ≡ P (DB| θ,β). Assume the proper priors on the cosmological
parameter and nuisance parameters are separable, i.e. π(θ,α,β) = π(θ)π(α)π(β), and
that each prior factor can both be numerically evaluated and sampled from.

(a) Considering Experiment A by itself, describe an algorithm to generate (possibly
weighted) samples from the posterior PA(θ,α) ≡ P (θ,α|DA) and to compute the
evidence ZA. Describe a method to estimate the marginal posterior, PA(θ) =∫
PA(θ,α) dα.

(b) Considering Experiments A and B jointly, write down expressions for the joint
posterior PAB(θ,α,β) ≡ P (θ,α,β|DA,DB), the evidence ZAB, and the marginal
posterior PAB(θ).

(c) Suppose we ultimately only care about the marginal posterior PAB(θ), and the high
dimensionalities of the nuisance parameters of the individual experiments, α and β,
make sampling the joint posterior PAB(θ,α,β) computationally impossible. Define
functions fA(θ) and fB(θ) that act as effective likelihood functions so that Bayes’
Theorem works on the marginal space of θ, i.e.

fA(θ) fB(θ)π(θ) = PAB(θ)ZAB.

(d) Devise a method to estimate the functions fA(θ) and fB(θ) using the outputs of the
methods described for the analysis of individual experiments in part (a), thereby
circumventing the sampling of the joint posterior PAB(θ,α,β).

(e) Describe a method to compute the evidence ZAB without sampling of the joint space
of (θ,α,β).

END OF PAPER
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