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1 An analytics company wishes to analyse the effect of money spent on two different
advertising services advert1 and advert2 on the number of visitors to a website. The
company collects for each of 40 websites the total amount (in hundreds of pounds) spent
on each advertising service, and the total number of visitors to the website (over a fixed
time period), collected in the dataset websites.

> head(websites, 6)

visitors advert1 advert2

60 0.89 1.24

74 1.13 0.62

53 0.84 0.57

50 1.21 0.55

60 0.57 0.74

72 1.13 0.96

Throughout this question assume that the values of advert1 and advert2 are
deterministic (fixed design). Three models were fit to the dataset as given by the R

code below.

> model1 <- glm(visitors~advert1+advert2, family = poisson, data = websites)

> summary(model1)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8879 0.1020 38.1226 <2e-16

advert1 0.1923 0.0886 2.1708 0.0299

advert2 0.1430 0.0714 2.0018 0.0453

> model2 <- glm(visitors~advert1+advert2, family = quasipoisson, data = websites)

> summary(model2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8879 0.1305 29.7965 <2e-16

advert1 0.1923 0.1134 1.6967 0.0982

advert2 0.1430 0.0914 1.5646 0.1262

> model3 <- glm.nb(visitors~advert1+advert2, data = websites)

> summary(model3)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8879 0.1259 30.8860 <2e-16

advert1 0.1917 0.1094 1.7516 0.0798

advert2 0.1437 0.0887 1.6198 0.1053

(a) State the statistical model being fitted in model1. Give an interpretation of the
fitted coefficients of (Intercept) and advert1 in model1 (assuming the model is correct).

(b) State the statistical model being fitted in model2.

(c) What is the value outputted by the following line of R code?

> sum(residuals(model1, type="pearson")^2)

[You may leave your answer as an unsimplified numerical expression.]

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 218



3

(d) State the name given to the model fit by glm.nb. Construct a test of the null of
model1 against the alternative of model3, giving the p-value of your test. You may find
the following R outputs helpful.

> 1-pchisq(AIC(model1)-AIC(model3), df=1)

0.1595522

> 1-pchisq(AIC(model1)-AIC(model3)+1, df=1)

0.08437928

> 1-pchisq(AIC(model1)-AIC(model3)+2, df=1)

0.04608555

> 1-pchisq(AIC(model1)-AIC(model3)+4, df=1)

0.0144816

(e) Suppose the analyst knows that there are unobserved independent random
variables λi with mean αiνi and variance α2

i νi, for constants αi, νi > 0, and that the
number of visitors to the ith website conditional on λi, are independently Poisson(λi)
distributed. Suppose the analyst also knows that the common mean function across all
the three models model1, model2 and model3 is correct. Suggest, with reason, which of
the three p-values for the coefficient advert1 provided in the summary outputs is most
appropriate for testing the null of the coefficient of model1 being zero in the following two
cases: (i) νi = ν does not depend on i; (ii) αi = α does not depend on i. [You may assume
that large sample approximations may be validly applied in both cases, and may use any
results from the course.]

(f) The analyst now decides that they are unhappy to model the mean function as
in model1, model2 and model3, and so instead decides to fit a CART (regression) decision
tree on the data. They perform the following R code on a smaller dataset, using only the
first three datapoints in the websites dataset.

> train <- websites[1:3,]

> fit.dt <- rpart(visitors~advert1+advert2, data=train, cp=0, maxdepth=1, minbucket=1)

> single.test.datapoint <- data.frame(advert1=0, advert2=0)

> predict(fit.dt, newdata=single.test.datapoint)

Find the numerical output given by the predict command in the final line of code, and
explain why this estimator is likely to be a heavily biased (in comparison to its variance)
estimate for the expected number of visitors to a website with no money spent on both of
the two advertising services.
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2 Suppose we have Y ∈ Rn and X ∈ Rn×p as a vector Y and matrix X in R. The
function glmnet can be used to fit elastic nets (without an intercept term) of the form

β̂α,λ ∈ argmin
β∈Rp

(
1

2n
∥Y −Xβ∥22 + λ

{
1− α

2
∥β∥22 + α∥β∥1

})
,

for λ ⩾ 0, α ∈ [0, 1].

(a) State how the ridge and Lasso estimators are related to the elastic net.

(b) Suppose that X⊤X = n Ip. Compute an explicit formula for β̂α,λ in terms of

the OLS estimator β̂OLS (and α, λ). Hence show that

min
(
|(β̂0,λ)j |, |(β̂1,λ)j |

)
⩽ |(β̂α,λ)j | ⩽ max

(
|(β̂0,λ)j |, |(β̂1,λ)j |

)
,

for all λ ⩾ 0, α ∈ [0, 1], j = 1, . . . , p. For each α ∈ (0, 1], define (λ∗
α)j to be the minimum

value of λ ⩾ 0 such that (β̂α,λ)j = 0. Show that if (β̂OLS)j ̸= 0 then the function α 7→ (λ∗
α)j

is strictly decreasing. Briefly explain the behaviour of (λ∗
α)j as α ↓ 0.

(c) Suppose p = 2, n = 100, and X⊤X = n Ip. Consider the following R output.

> unregularised.fit <- glmnet(X, Y, family="gaussian", alpha=0.5, lambda=0, intercept=FALSE)

> coef(unregularised.fit)[,]

(Intercept) V1 V2

0.000000 1.41 -0.41

> en.fit <- glmnet(X, Y, family="gaussian", alpha=0.5, intercept=FALSE)

> plot(en.fit, xvar="lambda")
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Find the explicit equations for the two curves in the plot.

(d) Suppose now p = 2, X⊤X = n

(
1 ρ
ρ 1

)
for some ρ ∈ (−1, 1), and the OLS

estimator (β̂OLS)j > 0 for j = 1, 2. Define λ† to be the minimum value of λ ⩾ 0 for which

(β̂1,λ)j = 0 for some j ∈ {1, 2}, and λ‡ to be the minimum value of λ ⩾ 0 for which

(β̂1,λ)j = 0 for all j ∈ {1, 2}. Find explicit expressions for λ† and λ‡ in terms of β̂OLS (and

ρ), and show that the difference λ‡ − λ† depends only on β̂OLS.
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3 Consider the K class classification problem for data (X,Y ) ∈ Rp × {1, . . . ,K}.
Suppose (X1, Y1), . . . , (Xn, Yn) are i.i.d. copies drawn from the same distribution as (and
independent of) (X,Y ). Given a classifier hn : Rp → {1, . . . ,K} trained on the data
(X1, Y1), . . . , (Xn, Yn) let R(hn) := E[ℓ(hn(X), Y )] where ℓ denotes the misclassification
loss.

(a) Define the conditional class probabilities pk(x) for k = 1, . . . ,K. Define the
Bayes classifier h∗ and Bayes risk RBayes. State what it means for a classifier hn (trained
on the n observations above) to be consistent.

(b) Define the L-nearest neighbour classifier hLNN
n (constructed using the training

data (X1, Y1), . . . , (Xn, Yn)). Briefly state how the choice of L dictates a bias–variance
tradeoff. [You need not introduce or state any formal results here.]

(c) In the case K = 2, and if there exists some c > 0 such that 1
2 + c ⩽ ph∗(x)(x) ⩽

1− c for all x ∈ Rp, show that h1NN
n is not consistent.

(d) Show that

lim
n→∞

R(h1NN
n ) ⩽ 2RBayes −

K

K − 1
{RBayes}2.

[Note: Throughout this question you may assume that pk satisfies limn→∞ E[pk(X(1))f(X)] =
E[pk(X)f(X)] for any bounded (measurable) function f : Rp → R and any k ∈ {1, . . . ,K},
where X(1) denotes the nearest neighbour of (X1, . . . , Xn) to X. You may also ignore any
potential measurability issues throughout.]

[Note: Throughout this question you may ignore ties.]
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4 Each row of a data frame text contains 40 different numeric attributes of an online
review that is either positive or negative, together with the positive (P) or negative (N)
label itself, and the date of the review.

> dim(text)

10000 42

> text[1:4, ]

date review att1 att2 att3 att4 att5 ...

Jan2012 P 0.0 0.7 0.1 0.9 -0.9 ...

Jan2012 P -0.2 0.4 -0.3 0.1 0.3 ...

Jan2012 N 0.9 -0.9 0.7 0.8 0.2 ...

Feb2012 N 0.1 0.7 -0.2 0.1 -0.4 ...

> text[9999:10000, ]

date review att1 att2 att3 att4 att5 ...

May2025 N 0.0 -0.1 0.9 -0.3 -0.8 ...

May2025 P 0.4 0.7 -0.8 0.0 -0.2 ...

The goal is to build a classifier using the dataset text to predict the state (positive/negat-
ive) of reviews on an independent test dataset new.text consisting of new recent reviews
(of which we have access to the same attributes and labels).

> dim(new.text)

200 40

> new.text[1:4, ]

date review att1 att2 att3 att4 att5 ...

June2025 N 0.4 -0.8 0.4 -0.8 -0.7 ...

June2025 P 0.6 0.4 -0.7 0.9 0.9 ...

June2025 P 0.2 -0.1 0.4 1.0 0.2 ...

June2025 N -0.3 -0.5 -0.9 -0.1 0.2 ...

A classifier is built using the code below.

> x_train <- as.matrix(text[,3:42])

> y_train <- model.matrix(~ review-1, data=text)

> x_test <- as.matrix(new.text[,3:42])

> y_test <- model.matrix(~ review-1, data=new.text)

> nn.model <- keras_model_sequential() %>%

layer_dense(units = 40, activation = "relu", input_shape = c(40)) %>%

layer_dense(units = 20, activation = "relu") %>%

layer_dense(units = 2, activation = "softmax")

> compile(nn.model, optimizer="sgd", loss="categorical_crossentropy", metrics="accuracy")

> nn.fit <- fit(nn.model, x_train, y_train, epochs=5, batch_size=2,

validation_data = list(x_test, y_test))

> metric1 <- tail(1-nn.fit$metrics$val_accuracy,1)

> # Comment: above line calculates one minus "accuracy" on "validation_data"

> metric1

0.1923

(a) Write out the mathematical model being fit in nn.fit, clearly defining all
necessary quantities and functions. [You may specify the numeric class labelling of review
however you wish.] How many parameters are there in the model in total?

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b) State the mathematical form of the loss function being minimised to train
nn.fit. Briefly explain how overfitting is avoided here. State what is being calculated in
the ‘forward pass’ step of the training algorithm, and how many times in fitting nn.fit

above this ‘forward pass’ step is performed.

(c) Suggest two reasons why AIC may not be appropriate to compare nn.fit with
the logistic classifier.

(d) Another model is proposed that is identical to nn.fit except for that all
instances of the ReLU activation function are replaced with the activation function
σ(η) = ηΦ(η), where Φ denotes the cumulative distribution function of the standard
normal distribution. Give one reason why this alternative activation function may be
more preferable over ReLU, and one reason why it may be less preferable.

The following R code is then performed.

> errors <- rep(0, 10000)

> for (i in 1:10000) {

nn.model.i <- nn.model

nn.fit.i <- fit(nn.model.i, x_train[-i,], y_train[-i,], epochs=5, batch_size=2,

validation_data = list(x_train[i,], y_train[i,]))

errors[i] <- tail(1-nn.fit.i$metrics$val_accuracy,1)

}

> metric2 <- mean(errors)

> metric2

0.0405

(e) State the name given to the quantity metric2, and give its algebraic form. [You
may make reference to previous parts of the question, and do not need to specify how
relevant weights are estimated.] State a reason why metric2 may not be reasonable to
compute in practice.

(f) Suggest a reason why metric2 does not appear to act as a good approximation
of metric1.
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5 A dataset finances is collected by following 10 people over the course of 10 years,
recording each year the amount of money they earned, and the amount of money they
spent (both in units of tens of thousands of pounds). For the ith person on the jth
year, let Xij be the total money earned and Yij be the total money spent (i = 1, . . . , 10,
j = 1, . . . , 10).

> head(finances,12)

person year earned spent

1 1 1 3.74 1.97

2 1 2 3.86 2.45

3 1 3 3.88 2.19

4 1 4 4.06 2.42

5 1 5 4.06 2.46

6 1 6 4.13 2.38

7 1 7 4.34 2.43

8 1 8 4.58 2.78

9 1 9 4.60 2.85

10 1 10 4.68 2.82

11 2 1 5.81 6.62

12 2 2 5.78 6.72

> levels(finances$person)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

A data analyst fits the following two models.

> model1 <- glm(spent ~ earned, family = gaussian, data = finances)

> model2 <- lmer(spent ~ earned + (1|person), data = finances, REML = FALSE)

[Note that fitting a glm with family = gaussian fits an identical model to that of lm, but
outputs the null and residual deviances, and the AIC.]

(a) Write down the mathematical models being fitted in model1 and model2. [You
need not specify any estimates of the parameters in the models.]

(b) Suggest one reason why model1may be unreasonable, and how model2 addresses
your stated issue.

A reduced output of the two fitted models is given below (with some estimates
removed, either replaced with ??? or V1, V2, V3, V4).

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.68782 0.56115 3.008 0.00334 **

earned 0.54218 0.09722 5.577 2.17e-07 ***

Null deviance: 203.27 on 99 degrees of freedom

Residual deviance: 154.30 on 98 degrees of freedom

AIC: 333.16

> summary(model2)

AIC BIC logLik deviance df.resid

-82.4 -72.0 45.2 ??? ???

[QUESTION CONTINUES ON THE NEXT PAGE]
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Random effects:

Groups Name Variance Std.Dev.

person (Intercept) ??? V3

Residual ??? V4

Number of obs: 100, groups: person, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) V1 ??? ???

earned V2 ??? ???

Correlation of Fixed Effects:

(Intr)

earned ???

(c) State the training error (with respect to the squared error loss) of model1.

The data analyst also performs the following R code:

> a <- model.matrix( ~ earned, data = finances)

> A <- t(a) %*% a

> A

100.0 562.600

562.6 3331.778

> y_on_person <- lm(spent ~ person - 1, data = finances)

> x_on_person <- lm(earned ~ person - 1, data = finances)

> gy <- summary(y_on_person)$coefficients[,1]

> gx <- summary(x_on_person)$coefficients[,1]

> length(gy)

> 10

> sum(gy)

47.381

> sum(gx)

56.26

> t(gy) %*% gy

244.1738

> t(gx) %*% gx

332.2809

> t(gx) %*% gy

274.898

(d) Explain why for the matrix A = A ∈ R2×2 in the outputs above the following
two results hold: (i) A11 = 100 and (ii) 0.1 × A12 = sum(gx). [Hint: Note that, given a
fitted model, the call summary(model)$coefficients[,1] extracts its fitted coefficients.]

(e) Show that (V1, V2, V3, V4) (each given in the output of summary(model2) above)
satisfies

(V1, V2, V3, V4) ∈ argmin
(α,β,σ,τ)∈R×R×(0,∞)×(0,∞)

ω(α, β, σ, τ),

for a function ω that you should specify. [Note: The function ω may be written in terms
of numerical and matrix expressions that need not be simplified, but must not contain
expressions explicitly in terms of the original data (Yij , Xij).]
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END OF PAPER
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