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(a) Consider a Markov chain X on a finite state space S with invariant distribution
π. Under which conditions is a randomised stopping time τ corresponding to this chain
also a strong stationary time?

(b) We consider the following way in which k people shuffle a deck of n cards. One
shuffle consists of each person taking a card which is currently on the top of the deck
until n− k cards are left in the deck, and then, one by one, in random order, each of the
k people places their card in the uniformly random location in the deck (to return their
card the first person chooses from n − k + 1 locations, the second person chooses from
n− k + 2, and so on until the final person chooses from n locations). Let S be the set of
all permutations of {1, . . . , n}, X the Markov chain on S corresponding to this method of
shuffling and π its invariant distribution.

(i) Check that π is the uniform distribution on S.

(ii) Let τ be a random time, which is the first time such that at time τ − 1, there
are at most k − 1 cards above the card which was initially the bottom card of the deck.
Explain why τ is a strong stationary time.

(iii) For k ≪ n, show that for all ε ∈ (0, 1) the mixing time of X, satisfies
tmix(ε) ⩽

n logn
k + Cn for large enough constant C depending on ε.

[You can use without proof any results from lectures provided that they are clearly
stated. You can use without proof that the mean of a geometric random variable with a
parameter q is 1

q while the variance is at most 1
q2

and that
∑n

i=1
1
i = log n+O(1).

Hint: In part (b)(iii) you may wish to consider some independent Bernoulli trials
with success probabilities which differ for different trials and which are all at least p and
couple suitably the time it takes to see the first success with a geometric random variable
with parameter p.]
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(a) Let X be a Markov chain on a finite state space S with invariant distribution

π. For every A ⊂ S set Φ(A) =
∑

x∈A,y∈Ac π(x)P (x,y)

π(A) .

(i) Define the bottleneck ratio Φ∗ and the isoperimetric profile Φ∗(r) for r ⩽ 1
2 .

(ii) Let A = A1∪A2∪. . .∪Ak for some disjoint sets Ai ⊂ S such that for all i ̸= j with
i, j ⩽ k for all x ∈ Ai, y ∈ Aj we have that P (x, y) = 0. Show that Φ(A) ⩾ infi⩽k Φ(Ai).

(b) Let V1 = ([0, n2] × [0, n2]) ∩ Z2 be the set of points with integer coordinates in
a square box of side lengths n2 and let E1 be the lattice edges connecting (x1, x2) and
(y1, y2) from V1 if and only if |x1 − y1| + |x2 − y2| = 1. Let (V2, E2) be another copy of
the pair (V1, E1). Let E1,2 be a set of edges connecting for all k, ℓ ∈ {0, 1, . . . n} the vertex
with coordinates (kn, ℓn), from V1, with the vertex which has exactly the same coordinates
in V2 (there are (n+ 1)2 edges in E1,2). Let G = (V1 ∪ V2, E1 ∪E2 ∪E1,2). Show that the
mixing time of lazy, simple random walk on G satisfies tmix ≲ n4.

[You are allowed to use any results from lectures without proof. For part (b), it

might be useful to recall that for a lazy chain tmix ≲
∫ 4/M
4πmin

du
uΦ2

∗(u)
+ 1

γ log(M) where γ is

the spectral gap.]
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(a) Suppose that a Markov chain with transition matrix P takes values in a finite
vertex set V of a graph G with length function ℓ. Let ρ be the corresponding path metric,
α ∈ R and let

ρK(µ, ν) = inf{E[ρ(X,Y )] : (X,Y ) is a coupling of µ and ν}

be the transportation metric corresponding to ρ. Suppose that for all edges (x, y) there
exists a coupling (X1, Y1) of P (x, ·) and P (y, ·) such that

Ex,y[ρ(X1, Y1)] ⩽ e−αρ(x, y).

Show that for any x, y ∈ V we have ρK(P (x, ·), P (y, ·)) ⩽ e−αρ(x, y) and use this to show
that for any probability measures µ and ν we have ρK(µP, νP ) ⩽ e−αρK(µ, ν).

Let diam (V ) = maxx,y ρ(x, y) and deduce that

tmix(ε) ⩽
1

α
(log(diam (V )) + log(1/ε)).

[You can assume that a transportation metric corresponding to a path metric is a
well-defined metric and that it upper bounds the total variation distance.]

(b) Let X be a Markov chain on state space of all subsets of {1, . . . , n} of size at
most k, i.e. V = {A ⊂ {1, 2, . . . , n} : |A| ⩽ k}, where k < n, which evolves as follows. If
the current state is a set A ∈ V we first pick m to be a uniform number from {0, 1} and
move the chain depending on the value of m. If m = 0 the chain stays in place. If m = 1
we pick a uniform number i in {1, . . . , n}. If i ∈ A the chain moves to A\{i}, while if i /∈ A,
it moves to A ∪ {i} provided that |A| < k, and otherwise, it stays in place. For A,B ∈ V

let ρ(A,B) = |A\B|+|B\A|+||A|−|B||
2 . Show that ρ is a path metric corresponding to some

length function ℓ. Use it to show that the mixing time of X satisfies tmix(ε) ≲ n log
(
k
ε

)
.
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In this question, you can use any results from lectures without proof.

(a) For a finite, reversible, Markov chain X on the state space V define the quantity
hitα (ε) for α, ε ∈ (0, 1). Define a hitα cutoff. Does mixing time cutoff imply a hit 1

2
cutoff?

(b) Let d > 0 be an integer constant which does not depend on n and let
G = Gn = (V,E) be a graph for which |V | = n is an even number and where each
vertex has degree d. Let X be a simple random walk on G, let its mixing time be tmix and
let its relaxation time trel satisfy trel ≪ tmix. Let θ = 1

tmix
and let Ẽ be a set of edges on

V , disjoint from E such that each vertex from V belongs to exactly one edge in Ẽ. Let Y
be a weighted random walk on (V,E ∪ Ẽ) such that edges in E have weight 1 and edges
in Ẽ have weight θ, or more precisely Y is a Markov chain with transition probabilities
P̃ (x, y) = 1{{x,y}∈E}

1
θ+d + 1{{x,y}∈Ẽ}

θ
θ+d for all x, y ∈ V .

(i) Are X and Y reversible chains? Find their invariant distributions.

(ii) Prove that if X does not exhibit cutoff, then Y also does not exhibit cutoff.

[You can use without proof that for any constant c and any f(n) ≍ 1
g(n) such that

f(n) → 0 as n → ∞ we have (1− cf(n))g(n) ≍ 1.]

5

(a) State Thomson’s principle and define an edge-cutset. Prove the Nash-Williams
inequality stating that if (Πk)

m
k=1 is a sequence of m disjoint edge-cutsets which separate

a and z then

Reff(a, z) ⩾
m∑
k=1

∑
e∈Πk

c(e)

−1

.

State the commute time identity.

(b) Let B = ([0, n]× [0, n2]) ∩ Z2 be the set of points with integer coordinates in a
box of side lengths n and n2 and let G be the graph with vertex set B and edges between
(x1, x2) and (y1, y2) if and only if |x1 − y1| + |x2 − y2| = 1. Let X be a simple random
walk on G starting from (0, 0) and let T(n,n2) be the first time X visits the vertex (n, n2).

Find the order of E(0,0)

[
T(n,n2)

]
.
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