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1 (a) Let X,X1, . . . , Xn be independent and identically distributed on a measurable
space (X ,A) and let G denote a collection of integrable, real-valued functions on X . What
does it mean for G to satisfy a Uniform Law of Large Numbers (ULLN)? [You may assume
that a relevant supremum is measurable.]

Given ϵ > 0, let N(ϵ,G) ∈ N ∪ {∞} denote the minimal N ∈ N ∪ {∞} for which
there exist integrable functions gL1 , g

U
1 , . . . , g

L
N , gUN : X → R with the properties that

E
∣∣gUj (X)−gLj (X)

∣∣ ⩽ ϵ for every j ∈ [N ], and for every g ∈ G, there exists j∗ ≡ j∗(g) ∈ [N ]

such that gLj∗(x) ⩽ g(x) ⩽ gUj∗(x) for all x ∈ X . Prove that if N(ϵ,G) < ∞ for every ϵ > 0,
then G satisfies a ULLN.

(b) State the Glivenko–Cantelli theorem, and deduce it from (a).

(c) Now suppose that the distribution function of X is continuous on R. Let B(R)
denote the Borel σ-algebra on R and for A ∈ B(R), define gA : R → R by gA(x) := 1{x∈A}.
Does G := {gA : A ∈ B(R)} satisfy a ULLN? Justify your answer.

2 In the context of kernel density estimation, define what is meant by a kernel K
and the scaled kernel Kh, where h > 0. Given a bounded, Borel measurable function
g1 : R → R and an integrable function g2 : R → R, define their convolution g1 ∗ g2.

Let f be a density on R with f(x) = 0 for x ∈ (−∞, 0], and suppose that

µ :=
∫∞
0 xf(x) dx < ∞ and µ̄ :=

∫∞
0 f(x)/x dx < ∞. Let X1, . . . , Xn

iid∼ g, where g
is the density given by g(x) := xf(x)/µ for x ∈ R, and suppose that our goal is to
estimate f . Suppose further that µ is known, and consider the estimator f̂n given by

f̂n(x) :=
µ

nh

n∑
i=1

1

Xi
K

(
x−Xi

h

)
,

where K is a bounded kernel and h > 0. Find an exact expression, involving a convolution,
for the bias of f̂n(x). Compare this expression with the bias of a kernel density estimator
based on observations having density f .

Show that ∫ ∞

−∞
Var f̂n(x) dx =

µµ̄R(K)

nh
− 1

n

∫ ∞

−∞
(Kh ∗ f)2(x) dx (1)

for some R(K) that you should define. Prove further that µµ̄ > 1 and hence compare (1)
with the corresponding integrated variance of a kernel density estimator based on inde-
pendent observations having density f .
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3 For β, L > 0, define the Hölder class H(β, L) on R.

Consider a vector Y = (Y1, . . . , Yn)
⊤ of responses generated via

Yi = m(xi) + ϵi,

where xi = i/n for i ∈ [n], where m ∈ H(β, L) and where ϵ1, . . . , ϵn are independent
with E(ϵi) = 0 and Var(ϵi) ⩽ σ2 for i ∈ [n]. Fix x ∈ [0, 1], define K : R → [0, 1/2] by
K(u) := 1{|u|⩽1}/2, let p ∈ N0 and let h > 0. Give the definition of the local polynomial
estimator m̂n(x; p, h) of m(x) of degree p, bandwidth h and kernel K. Show that, for
suitable matrices X ∈ Rn×(p+1) and W ∈ Rn×n, and subject to a positive definiteness
condition that you should state, m̂n(x; p, h) can be expressed as an appropriate component
of β̂ = (β̂0, β̂1, . . . , β̂p)

⊤, where β̂ := (X⊤WX)−1X⊤WY .

Define the effective kernel {wi(x) : i ∈ [n]} of m̂n(x; p, h). Under the same positive
definiteness condition as above, prove that if R is a polynomial of degree at most p, then

1

n

n∑
i=1

wi(x)R(xi) = R(x).

Writing Q(u) := (1, u, u2/2, . . . , up/p!)⊤ ∈ Rp+1 for u ∈ R, explain why the
minimum eigenvalue Λp of the matrix

∫ 1
0 Q(u)Q(u)⊤ du ∈ R(p+1)×(p+1) is positive. Using

the fact that the minimum eigenvalue λ0 ≡ λ0,n,h,x(p) of n
−1X⊤WX satisfies

inf
x∈[0,1]

λ0,n,h,x(p) ⩾
1

2

(
Λp −

6e

nh

)
,

when n ⩾ 2 and h ⩽ 1/4, prove that for p ⩾ ⌈β⌉ − 1 there exist n0 ≡ n0(p) ∈ N,
a ≡ a(p) > 0 and C ≡ C(p) > 0 such that

sup
x∈[0,1]

sup
m∈H(β,L)

E
[{

m̂n(x; p, h)−m(x)
}2]

⩽ C

(
σ2

nh
+ L2h2β

)
for n ⩾ n0 and h ∈ [a/n, 1/4].
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4 Let P and Q be probability measures on a σ-finite measure space (X ,A, µ), having
Radon–Nikodym derivatives p and q respectively with respect to µ. Write down expressions
for the total variation distance TV(P,Q) and Hellinger distance H(P,Q) as integrals with
respect to µ. Prove that

TV2(P,Q) ⩽ H2(P,Q) ⩽ 2TV(P,Q).

Writing Pn and Qn for the n-fold product distributions of P and Q respectively, and
using the fact that these probability measures have Radon–Nikodym derivatives pn and qn

respectively with respect to the σ-finite product measure µn, prove that

H2(Pn, Qn) = 2− 2

(
1− 1

2
H2(P,Q)

)n

.

State Le Cam’s two-point lemma.

Let X1, . . . , Xn
iid∼ U [θ, θ + 1] for some θ ∈ R. Prove that there exists a universal

constant c > 0 such that

inf
θ̂∈Θ̂

sup
θ∈R

Eθ

{(
θ̂(X1, . . . , Xn)− θ

)2}
⩾

c

n2

for all n ∈ N, where Θ̂ denotes the set of Borel measurable functions from Rn to R. [You
may use the fact that (1− x)a ⩾ 1− ax for x ∈ [0, 1] and a ⩾ 1.]

END OF PAPER
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