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1 Percolation in half-spaces
We consider site percolation with parameter p on the half-space graph H = N×Zd−1

for d ⩾ 2. The boundary hyperplane {0} × Zd−1 will be denoted by B. So, any point in
H \B has 2d neighbours in H, while points in B have 2d− 1 neighbours in H.

Throughout this exercise, p is some fixed number in (0, 1). The process ω =
(ω(x), x ∈ H) will be a collection of independent Bernoulli random variables of parameter
p in H (so, this is site percolation in H with parameter p). We call N = N(ω) the number
of infinite clusters for ω.

The goal of questions a) and b) is to derive some properties inspired by the proofs
presented in the lectures for percolation in Zd:

a) Show that when p is large enough, there almost surely exists at least one open
infinite cluster in H.

b) What is the law of the configuration (ω(x+ e), x ∈ H) where e = (0, 1, 0, . . . , 0)?
Show that there exists k0 ∈ N ∪ {∞} such that N = k0 almost surely. Show that this k0
is in fact in {0, 1,∞}.

The goal of the next questions is to derive features that are more specific to the
half-space case. We assume from now on that p is chosen in such a way that there exists
(at least) one infinite open cluster for percolation in H.

c1) We consider percolation in H. We let A the event that the cluster C containing
the origin is infinite, and that the origin is the only point in B ∩ C [equivalently, A is
the event that an infinite cluster intersects B only at the origin]. We let Q = P (A).
Show that if Q ̸= 0, then the probability that for percolation in the whole space Zd, there
exists at least one infinite cluster contained in H and another infinite cluster contained in
H ′ := (−∞,−2] × Zd−1 is at least (1 − p)Q2. What can you conclude about Q [You can
use here the uniqueness of the infinite cluster for percolation in the whole-space proved in
the lectures]?

c2) Let x1, . . . , xn be n points in B for some n ⩾ 2. Can you adapt the proof of the
previous result to show that for each infinite cluster C for percolation in H, the probability
that C ∩B = {x1, . . . , xn} is equal to 0? Conclude that almost surely, any infinite cluster
C for percolation in H that intersects B does so at infinitely many points.

d1) For each n0 ⩾ 0, we define the half-spaceHn0 := [n0,∞)×Zd−1 and its boundary
Bn0 := {n0} × Zd−1. We consider percolation in Hn0 that we then restrict to Hn0+1.
Suppose that C is an infinite cluster for the percolation restricted to Hn0+1 that intersects
Bn0+1. Using the result of the previous question, show that it is then necessarily contained
in an infinite cluster C ′ for the percolation in Hn0 that intersects Bn0 .

d2) Suppose that with positive probability, there exists an infinite cluster C for
percolation in H that does not intersect B. Using the previous question, show that this
leads to a contradiction.

So, c2) and d2) show that any infinite cluster for percolation in H does intersect B
at infinitely many points.
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2 Large but finite percolation clusters
We consider supercritical site percolation (w(x), x ∈ T ) of parameter p for the

triangular lattice T in the plane. The goal of this exercise is to estimate the probability
that the origin is in a finite cluster that contains a large number of points.

Throughout this exercise, p > 1/2 is fixed.

The questions a1) to a4) deal with lower bounds:

We define θ = θ(p) to be the probability that the origin is in an infinite open cluster.

When N ⩾ 2, we denote by HN the big hexagon centered at the origin consisting
of all the points on the triangular lattice that are at graph-distance at most N from the
origin. We let hN = HN \HN−1.

We let CN denote the set of points x in HN such that there exists an open path
from x to hN .

We denote the number of points in a set S by #S.

a1) Show that E[#CN ] ⩾ θ ×#HN .

a2) Deduce that for all N ⩾ 2, P [#CN ⩾ (θ/2)×#HN ] ⩾ θ/2 [you may first look
for an upper bound for E[#CN ], observing that #CN ⩽ #HN always holds].

a3) Let AN denote the event {#CN ⩾ (θ/2) ×#HN and 0 ∈ CN}. Show that for
all N ⩾ 2, P [AN ] ⩾ θ2/2.

a4) Deduce that there exists a positive constant u = u(p) such that the probability
that the origin is in a finite cluster with at least (θ/2) × #HN points is bounded from
below by some constant times exp(−uN) [you may consider the event where AN holds and
where all sites of hN+1 are open and where all the sites of hN+2 are closed].

The following questions deal with upper bounds:

b1) Let w′(x) = 1− w(x). What can you say about (w′(x), x ∈ T )?

b2) Let Bn denote the event that there exists a circuit of closed sites for w with
diameter at least n that surrounds the origin and goes through one of the n points
(1, 0), . . . , (n, 0). Use exponential decay for subcritical percolation to show that for some
u(p) > 0, P [Bn] ⩽ n exp(−un) for all n ⩾ 1.

b3) Use exponential decay for subcritical percolation to derive an exponential upper
bound for the probability that there exists a closed circuit around the origin that goes
through one of the points of {(m, 0), m ⩾ n}.

b4) Deduce an exponential upper bound for the probability that the origin is in a
finite open cluster of diameter greater than n.

b5) Conclude that there exists v(p) > 0, such that for all m ⩾ 1, the probability
that the origin is in a finite cluster with at least m sites is bounded by exp(−v

√
m). [you

may use without proof the simple fact that for some absolute constant c, the diameter of a
set with m points in the triangular lattice is at least c

√
m]. How does this compare with

the result of a4)?
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3 Harris-FKG inequality for the random cluster model
a) Write down the definition of the random cluster model (sometimes called FK-

percolation) with parameter p associated to the Ising model on a finite graph, and detail
how the coupling with an Ising model of parameter β (that depends on p) on this graph
works.

b) Show that this random cluster probability measure is the stationary measure of a
simple resampling Markov chain. Can you use this to compare (in some sense to be made
precise) this random cluster measure with Bernoulli percolation with parameter p on the
edges of the graph? Can you also compare this random cluster measure with Bernoulli
percolation with parameter p/(2− p) on the edges of the graph?

c) Let A and B be two non-empty increasing events (measurable with respect to
the state of the edges of the graph). Using the previous Markov chain (and also a variant
of this Markov chain), show that the random cluster measure satisfies the FKG-Harris
inequality, namely that P [A ∩ B] ⩾ P [A]P [B]. What can you say about P [A ∩ B′] when
A is an increasing event and B′ a decreasing event?

d) Let PN denote the random cluster measure on the finite box ΛN = {−N,−N +
1, . . . , N − 1, N}d (sometimes denoted as [−N,N ]d), viewed as part of the lattice Zd (so
that two points in ΛN are neighbours if and only if they are neighbours in Zd). Let A
denote an increasing non-empty event that is measurable with respect to the state of the
edges in [−N0, N0]

d. Show that (PN [A], N ⩾ N0) is non-decreasing with respect to N ,
and has therefore a limit as N → ∞.

e) Can you compare this limit with the probability of A for Bernoulli percolation of
parameter p on the edges of Zd and with the probability of A for Bernoulli percolation of
parameter p/(2− p)?

4 Coursework on the Green’s function and Wilson’s algorithm
Consider a finite connected graph D with n+ 1 sites {x0, . . . , xn}. We assume that

each point of D has the same number ∆ of neighbours.

When A ⊂ D is non-empty and x ∈ D \ A, we define gD\A(x) to be the expected
number of visits of x by a random walk in D started from x before it hits A.

a) Outline one possible proof of the fact that

n∏
j=1

gD\{x0,...,xj−1}(xj)

does not depend on the chosen order of the points in D.

b) How does this quantity relate to the number of spanning trees in D. Explain in
detail.
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5 About conformal restriction and the continuum GFF
The two parts are independent.

PART A (on the continuum Gaussian Free Field (GFF))

A1) Recall the definition of the continuum Gaussian Free Field Γ in R3.

A2) Can one define the mean value of this GFF on the (two-dimensional) square
[0, 1]2 ×{0} (i.e., can one define the random variable Γ(µ) when µ is the uniform measure
on this square)? Justify.

Can one define the mean value of this GFF on a (one-dimensional) segment
[0, 1] × {0} × {0} (i.e., can one define the random variable Γ(µ) when µ is the uniform
measure on this segment)? Justify.

PART B (on conformal restriction).

We assume that there exists a measure ρ on the set of self-avoiding loops in the
entire plane (viewed as a subset of the set of compact sets in the plane, endowed with the
Hausdorff topology), such that the following holds:

� The ρ-mass of the set of loops of diameter in [1/2, 1] that are contained in [0, 1]2 is
equal to 1.

� For any two bounded simply connected domains D and D′, and for any conformal
transformation Φ from D onto D′, the conformal image of ρD under Φ is equal to
ρD′ (where ρD and ρD′ respectively denote the measure ρ restricted to the set of
loops that are in D and the measure ρ restricted to the set of loops that stay in D′).

B1) We denote by µ the measure ρ restricted to the set of loops that do surround
the origin. What can you say about µ? [You are allowed to use results discussed in the
lectures without recalling their proofs].

B2) Show that the measure ρ is invariant under translations of any vector x (that is
under the mapping that associates to a loop γ the loop γ+x). Can you relate the measure
µx defined as the measure ρ restricted to the set of loops that surround some given point
x with the measure µ?

B3) Deduce that (provided it exists), the measure ρ is actually unique.

B4) Let x and y be two different points in R2 and D a bounded simply connected
domain containing these two points. Show that the measure ρ restricted to the set of loops
in D that surround both points x and y can be equivalently be described in terms of outer
boundaries of Brownian loops that go through x or of outer boundaries of Brownian loops
that go through y.

END OF PAPER
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