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1 Concentration of information
For a random variable X with p.m.f. P , let H(X) = E(− logP (X)) denote its

Shannon entropy. The varentropy of X is defined as

VH(X) := Var(− logP (X)).

(a) State and prove Hoeffding’s lemma for discrete random variables.

(b) Show that, if X ∼ Bernoulli(p), then H(X) ⩽ 2
√
p+ p.

(c) For i = 1, . . . , n, let pi ∈ (0, 1). Suppose X1, . . . , Xn are independent Bernoulli(pi)
random variables such that Xi has probability mass function (p.m.f.) Pi, i.e.
P(Xi = 1) = Pi(1) = pi = 1 − Pi(0). Let P = P1 ⊗ · · · ⊗ Pn denote the p.m.f.
of (X1, . . . , Xn).

Show that, if for some 1
9 > δ1, . . . , δn > 0, H(Xi) ⩾ 3

√
δi for every i = 1, . . . , n, then

for any t ⩾ 0,

P
(
logP (X1, . . . , Xn) +H(X1, . . . , Xn) ⩽ −t

)
⩽ e

− 2t2∑n
i=1

(log δi)
2
.

(d) Under the same assumptions as in part (c), show the following bound for the
varentropy:

VH(X1, . . . , Xn) ⩽
1

4

n∑
i=1

(log δi)
2.

[For parts (b),(c) and (d) you may use any results from the lectures, provided you
state or quote them clearly.]
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2 Poincaré and exponential concentration
Let X be a random vector on Rd with finite Poincaré constant, CP (X) < ∞. Let

f : Rd → R be a continuously differentiable function, which is 1-Lipschitz (with respect
to the Euclidean norm). Assume that Ef(X) = 0 and F (λ) := Eeλf(X) < ∞ for every
λ ∈ R.

[In all parts of this question, you may use any results from the lectures provided
you state or quote them clearly.]

(a) Show that for every m ⩾ 1, |λ| < 2√
CP (X)

,

F (λ) ⩽
m−1∏
k=0

(
1

1− λ2CP (X)
4k+1

)2k

F
( λ

2m

)2m
.

[You may use without proof the fact that if f is differentiable and 1-Lipschitz,
∥∇f∥ ⩽ 1.]

(b) Show that for any λ,

F
( λ

2m

)2m
→ 1 as m→ ∞

and for λ∗ = 1√
CP (X)

,

F (λ∗) ⩽ 3.

(c) Conclude that for every t ⩾ 0,

P
(
|f(X)| ⩾ t

)
⩽ 6e

− t√
CP (X) .

(d) Let Y be another random variable on R having density 1
2e

−|x|, x ∈ R. Show that

CP (Y ) ⩽ 4.

[You may use without proof the identity Ef(Y ) − f(0) = Esgn(Y )f ′(Y ), where for
x ∈ R, sgn(x) denotes the sign of x.]
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3 Probability distances
Let f, g be everywhere positive, continuously differentiable probability densities on

R. The relative entropy between f and g is

D(f∥g) :=
∫
R
f(x) log

f(x)

g(x)
dx.

The Fisher information distance between f and g is

J(f∥g) :=
∫
R
f(x)

(f ′(x)
f(x)

− g′(x)

g(x)

)2
dx.

The Hellinger distance between f and g is

dH(f, g) :=

(
1

2

∫
R

(√
f(x)−

√
g(x)

)2
dx

) 1
2

.

(a) State the Gaussian Poincaré and the Gaussian log-Sobolev inequalities.

(b) Let f be a probability density as above and ϕ(x) = 1√
2π
e−

x2

2 , x ∈ R. Show that

D(f∥ϕ) ⩽ 1

2
J(f∥ϕ).

(c) Let f and ϕ as above. Show that

d2H(f, ϕ) ⩽
1

4
J(f∥ϕ).

[You may use any results from the lectures provided you state or quote them clearly.]
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4 Transportation and Couplings

(a) Let Z be an integer-valued random variable having distribution P such that
E|Z|eλZ < ∞ for all λ ∈ R. Let ψZ−EZ(λ) denote the log-MGF of Z − EZ and
let its Legendre transform be denoted by ψ∗

Z−EZ(t) = supλ∈R[λt− ψZ−EZ(λ)]. Let

b := sup{ψ′
Z−EZ(λ) : λ ∈ R}.

Prove that for all 0 < t < b,

ψ∗
Z−EZ(t) = inf

Q
{D(Q∥P ) : EQZ − EZ ⩾ t}.

[You may use without proof the fact that ψ′
Z−EZ(λ) is continuous and the relative

entropy is positive. Anything else that you use, you should prove.]

(b) Let X ∼ P and Y ∼ Q be random variables with values on a countable set Ω. Recall
that the total variation distance is

dTV(P,Q) = sup
A⊂Ω

|P (A)−Q(A)|.

Prove that
dTV(P,Q) ⩽ inf

π∈Π(P,Q)
Pπ(X ̸= Y ),

where Π(P,Q) denotes the set of all couplings of P and Q.

(c) Recall that a random variable N follows the Poisson(ν) distribution if, for any k ⩾ 0,

PN (k) =
e−ννk

k!
.

Let N be a Poisson(ν) random variable. For i = 1, . . . , n, let Xi ∼ Bernoulli(pi) be
independent with

∑n
i=1 pi = ν and let S =

∑n
i=1Xi. Let P,Q denote the probability

measures according to which N and S are distributed. Show that

dTV(P,Q) ⩽
n∑

i=1

p2i .

[You may use without proof the fact that, if Ni ∼ Poisson(νi) are independent, then∑n
i=1Ni ∼Poisson(

∑n
i=1 νi) and any result from the lectures provided that you state

it clearly.]

END OF PAPER
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