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1 (a) For f : Rd → R convex, define the subdifferential ∂f(x) of f at a point x ∈ Rd.

Let Y ∈ Rn, X ∈ Rn×mK , and consider the Group Lasso objective,

Q : RmK → R

Q(β) =
1

2n
∥Y −Xβ∥22 + λ

K∑
k=1

√
m∥β(k)∥2

where for any vector β ∈ RmK , we define β(k) ∈ RmK as the vector with entries

β
(k)
i := 1{(k−1)m<i⩽km} βi.

(b) Derive the subdifferential of the function fk : β 7→ ∥β(k)∥2 from the definition.

(c) Write down the subdifferential of Q at β. [You may use any result from lectures,
provided it is clearly stated].

(d) Let β̂ be a minimiser of Q over β ∈ RmK . Prove that the fitted values Xβ̂ are
unique.

(e) Let ν̂ = XT (Y −Xβ̂), and let E = {k ∈ {1, . . . ,K} : ∥ν̂(k)∥2 = nλ
√
m}. Is the

set E unique? Show that if the matrix X̃ with columns {Xi : (k − 1)m < i ⩽ km, k ∈ E}
has column rank m|E|, then β̂ is the unique minimiser of Q over RmK .
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2 Consider the linear model Y = Xβ0 + ε, with X ∈ Rn×p and β0 ∈ Rp. We assume
that ε = (ε1, . . . , εn)

T has entries which are independent, mean 0, and sub-Gaussian with
parameter σ. Let β̂ be a minimiser over β ∈ Rp of the function

Q(β) =
1

2n
∥Y −Xβ∥22 + λ∥β∥1.

(a) Prove the basic inequality

1

n
∥X(β0 − β̂)∥22 ⩽

1

n
εTX(β̂ − β0) + λ∥β0∥1 − λ∥β̂∥1.

Now suppose that the design matrix X is random, with i.i.d. rows distributed as
Np(0,Σ

0) where |Σ0
j,j | ⩽ v2 for each j = 1, . . . , p. Assume that X is independent of ε. Let

λ = Aσv
√
log(p)/n for some constant A, and n > log p.

(b) Show that, for a choice of A which you must specify, the event

Ω1 :=

{
1

n
∥X(β0 − β̂)∥22 ⩽ 2Aσv

√
log(p)

n
min(∥β0∥1, ∥β̂ − β0∥1)

}

has P(Ω1) → 1 as p → ∞. [You may quote properties of sub-Gaussian random variables
and basic concentration inequalities without proof.]

(c) Define the event

Ω2 =

{∥∥∥∥ 1nXTX − Σ0

∥∥∥∥
∞

⩽
µ

2(∥β̂∥0 + ∥β0∥0)

}

where µ is the smallest eigenvalue of Σ0 and ∥z∥0 := |{j : zj ̸= 0}| denotes the number of
non-zero entries in a vector z. Show that on Ω1 ∩ Ω2, we have

1

n
∥X(β0 − β̂)∥22 ⩽ 8A2σ2v2

(∥β̂∥0 + ∥β0∥0)
µ

log p

n
.
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3 (a) Define a positive definite kernel. Define a reproducing kernel Hilbert space and
its reproducing kernel.

Consider the function k : R× R → R, given by

k(x, y) =
1

ex−y + ey−x
.

(b) Show that, for random variables W and U which you must specify, and some
constant c > 0,

k(x, y) = cE[cos(Wx+ U) cos(Wy + U)] for all x, y ∈ R.

[Hint:
∫∞
−∞ e−i2πzξ 2

ez+e−z dz = 2π

eπ2ξ+e−π2ξ
for all ξ ∈ R].

(c) Prove that k is a positive definite kernel.

(d) Let (Wi, Ui)
ℓ
i=1 be i.i.d. copies of the pair (W,U) defined in part (b). Let

ϕ(x) =
√

c/ℓ(cos(W1x+U1), . . . , cos(Wℓx+Uℓ))
T . Show that there are positive constants

C1 and C2, such that for all 0 < ε ⩽ 1,

P

(
sup

x,y∈[−L,L]
|k(x, y)− ϕ(x)Tϕ(y)| ⩾ ε

)
⩽

C1L
2

ε2
exp

(
−C2ℓε

2
)

[Hint: Approximate the supremum by the supremum over x, y in a grid of evenly spaced
points in [−L,L]. You may assume |∂k(x, y)/∂x| < 1.]

4 (a) What does it mean to say that pi is a p-value for the null hypothesis Hi? Define
the Benjamini–Hochberg multiple testing procedure with parameter α for a family of null
hypotheses H1, . . . ,Hm with p-values p1, . . . , pm.

Throughout this problem, assume that p1, . . . , pm are independent.

(b) Show that the Benjamini–Hochberg procedure has false discovery rate less than
or equal to α.

(c) Suppose that under the hypothesisHi, pi has a Uniform(0, 1) distribution, for i =
1, . . . ,m. Show that, under the intersection hypothesis ∩m

i=1Hi, the Benjamini–Hochberg
procedure has familywise error rate α. [Hint: If X1 ⩽ X2 ⩽ . . . ⩽ Xn are order statistics
of n i.i.d. Uniform(0, 1) random variables, then for any m ⩽ n, ( X1

Xm
, X2
Xm

, . . . , Xm−1

Xm
) is

equal in distribution to the order statistics of m− 1 i.i.d. Uniform(0, 1) random variables
and independent of Xm.]
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5 Consider a model Y = Xβ0 + ε, where β0 ∈ Rp, X ∈ Rn×p, and ε ∼ Nn(0, σ
2I).

(a) Define the ridge regression estimator β̂λ of β0, and show that it is equal to
(XTX + λI)−1XTY .

(b) For any matrix A with thin singular value decomposition A = UDV T , write
A+ = UD+V T where D+ is the diagonal matrix with

D+
ii =

{
D−1

ii if Dii ̸= 0

0 if Dii = 0.

The ridgeless estimator is defined as limλ→0 β̂λ. Show that it is equal to (XTX)+XTY .

(c) Let W ∈ Rn×d be a random matrix with i.i.d. N(0, λ/d) entries. Let β̃ be the
ridgeless estimator fit to the response vector Y , with design matrix [X,W ] ∈ Rn×(p+d).
Let β̃1:p denote the first p entries of β̃. Show that

β̃1:p
a.s.→ β̂λ as d → ∞.

(d) Consider a model with random design matrix X in which the rows (x1, . . . , xn)
are i.i.d. Np(0, I). Let x

∗ ∼ Np(0, I) be independent from the training data (X,Y ). Show
that

RX(β̂λ) := E((x∗Tβ0 − x∗T β̂λ)
2 | X) = ℓ2(β0)T (Σ̂ + ℓI)−2β0 +

σ2

n
tr(Σ̂(Σ̂ + ℓI)−2),

where Σ̂ = XTX/n and λ = nℓ.

(e) Consider an asymptotic regime where p/n → γ ∈ (0,∞) as n, p → ∞, whilst
∥β0∥2 = r and λ = ℓn for constants r, ℓ. Let (Ap), (Bp) be sequences of matrices in Rp×p;
we write Ap ≍ Bp if tr(Θp(Ap−Bp)) → 0 as p → ∞ for every sequence of positive definite
matrices (Θp) with tr(Θp) ⩽ 1 for all p. We are told that there is a differentiable function
m : (0,∞] → R, such that, as n, p → ∞, a.s.

(Σ̂ + ℓI)−1 ≍ m(ℓ)I and (Σ̂ + ℓI)−2 ≍ −m′(ℓ)I.

Show that
RX(β̂λ)

a.s.→ ℓ2r2m′(ℓ) + σ2γ
(
m(ℓ)− ℓm′(ℓ)

)
.

END OF PAPER
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