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1 For a càdlàg function f : R+ → R of finite variation, define the following notation:

Vf (t) = lim
n

∞∑
k=1

|f(t ∧ tnk)− f(t ∧ tnk−1)| for t ⩾ 0

where tnk = k2−n,
∆f (t) = f(t)− f(t−) for t > 0,

where f(t−) = limε↓0 f(t− ε), and

Af = {t > 0 : ∆f (t) ̸= 0} .

(a) Let F : R+ → R be a distribution function. Show that F is càdlàg and that
VF (t) = F (t) − F (0) for all t ⩾ 0. Show that the set AF is countable. [Hint: you
may wish to consider the sets A(n) = {t ∈ [0, n] : ∆F (t) ⩾ 2−n} .] Show that

F (t)2 = F (0)2 + 2

∫ t

0
F dF −

∑
s∈AF∩(0,t]

|∆f (s)|2 for all t ⩾ 0

where
∫ t
0 F dF =

∫
R+

1(0,t]F dF as in lectures.

(b) Suppose f : R+ → R is càdlàg and of finite variation. Show that

Vf (t)− Vf (s) ⩾ |f(t)− f(s)| for all 0 ⩽ s ⩽ t.

Hence show that there exist distribution functions F and G such that f = F−G. Conclude
that the set Af is countable and that∑

s∈Af∩(0,t]

|∆f (s)| < ∞ for all t ⩾ 0.

[You may use without proof the fact that Vf is a distribution function.]

(c) Suppose f and g are càdlàg and of finite variation. Show that

f(t)g(t) = f(0)g(0) +

∫ t

0
f dg +

∫ t

0
g df −

∑
s∈Af∩Ag∩(0,t]

∆f (s)∆g(s) for all t ⩾ 0.
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2 Let (Xt)t⩾0 be a continuous local martingale with X0 = 0. For t ⩾ 0, let

A
(n)
t =

∞∑
k=1

(Xt∧tnk −Xt∧tnk−1
)2

and

M
(n)
t = X2

t −A
(n)
t =

∞∑
k=1

2Xtnk−1
(Xt∧tnk −Xt∧tnk−1

)

where tnk = k2−n. Let M2 denote the space of square-integrable continuous martingales
with norm

∥M∥ = sup
t⩾0

√
E(M2

t ).

(a) Under the assumption that there exists a constant C > 0 such that |Xt(ω)| ⩽ C for
all (t, ω) ∈ R+ × Ω, show that

(i) sup
t⩾0

E(A(n)
t ) ⩽ C2, (ii) sup

t⩾0
E
(
(M

(n)
t )2

)
⩽ 4C4, (iii) sup

t⩾0
E
(
(A

(n)
t )2

)
⩽ 10C4

Show that there exists a continuous adapted process A such that

E
(
sup
t⩾0

(A
(n)
t −At)

2

)
→ 0 as n → ∞.

Furthermore, show that if At = 0 almost surely for all t ⩾ 0 then Xt = 0 almost surely
for all t ⩾ 0. [You may use without proof the fact that the sequence (M (n))n is Cauchy in
M2. You may also use the completeness of M2.]

(b) Show, without the assumption of uniform boundedness of X, that there exists a
continuous adapted process A such that

P
(

sup
0⩽s⩽t

|A(n)
s −As| > ε

)
→ 0

for all t ⩾ 0 and ε > 0.

(c) Fix an exponent 0 < p < 2 and for t ⩾ 0, let

B
(n)
t =

∞∑
k=1

|Xt∧tnk −Xt∧tnk−1
|p.

Suppose that supnB
(n)
t < ∞ almost surely for all t ⩾ 0. Show that supnB

(n)
t = 0 almost

surely for all t ⩾ 0.
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3 (a) State Itô’s formula for a d-dimensional continuous semimartingale X and twice-
continuously differentiable f : Rd → R.

(b) State and prove Lévy’s characterisation of d-dimensional Brownian motion.

Let W be a scalar Brownian motion defined on a probability space (Ω,F ,P), and
let

St = ta +Wt

for an exponent a > 0. Fix non-random T > 0.

(c) Suppose a > 1/2. Show that there exists an equivalent probability measure Q such
that the process (St)0⩽t⩽T is a Q-Brownian motion. [You may use the Cameron–Martin–
Girsanov theorem and Novikov’s criterion without proof.]

(d) Suppose 0 < a < 1/2.

(i) Show that there exists a stopping time τ > 0 such St > 0 for all 0 < t ⩽ τ . [You
may use without proof the fact that lim inft↓0 t

−aWt = 0 almost surely. ]

(ii) Show that there does not exist an equivalent probability measure Q such that
the process (St)0⩽t⩽T is a Q-local martingale. [If you use a version of the fundamental
theorem of asset pricing, you must prove it. ]
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4 Consider the stochastic differential equation

dX = b(X)dt+ σ(X)dW (∗)

where the measurable functions b : R → R and σ : R → R are given and W is scalar
Brownian motion.

(a) What is a strong solution of equation (∗)? A weak solution?

(b) What does it mean to say equation (∗) has the pathwise uniqueness property? The
uniqueness in law property?

(c) Suppose that there is a constant K > 0 such that

2(x− y)(b(x)− b(y)) + (σ(x)− σ(y))2 ⩽ K(x− y)2

for all x, y ∈ R. Show that equation (∗) has the pathwise uniqueness property. [You may
use Gronwall’s inequality in the form f(t) ⩽ α+ β

∫ t
0 f(s)ds for t ⩾ 0 implies f(t) ⩽ αeβt

for t ⩾ 0.]

(d) Consider a weak solution of equation (∗) and let U : R+ × R → R be a bounded,
twice-continuously differentiable solution to the partial differential equation

∂U

∂t
(t, x) = b(x)

∂U

∂x
(t, x) +

1

2
σ(x)2

∂2U

∂x2
(t, x)

(i) Show that
U(t,X0) = E(U(0, Xt)|X0).

[If you use the Feynman–Kac formula, you must prove it.]

(ii) For fixed t > 0, show that there exists a previsible process (θs)0⩽s⩽t such that

U(0, Xt) = U(t,X0) +

∫ t

0
θs(dXs − b(Xs)ds).

(e) Again consider a weak solution of equation (∗) and let V : [ℓ, r] → R be a bounded,
twice-continuously differentiable solution to the ordinary differential equation

λV (x) = b(x)V ′(x) +
1

2
σ(x)2 V ′′(x) for all ℓ ⩽ x ⩽ r,

V (ℓ) = V (r) = 1

and where λ > 0 is a given constant. Let

T = inf{t ⩾ 0 : Xt < ℓ or Xt > r}

Show on the event {ℓ < X0 < r} that

V (X0) = E[e−λT |X0]

where the notation e−λT = 0 on the event {T = ∞} is used.
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