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(a) Give the definition of a standard Brownian motion B in R.

(b) Let B be a standard Brownian motion in R.

(i) Fix 0 ⩽ a < b ⩽ 1. Prove that
∫ b
a Bsds is a Gaussian random variable with

mean zero and variance
∫ b
a

∫ b
a min(s, t)dsdt. [Hint: approximate the integral using

Riemann sums.]

(ii) Suppose that f ∈ L2([0, 1]). Prove that (B, f) :=
∫ 1
0 Bsf(s)ds is a Gaussian

random variable with mean zero and variance
∫ 1
0

∫ 1
0 f(r)f(s)min(r, s)drds. [You

may use without proof that the step functions are dense in L2([0, 1]).]

(c) Suppose that (fn) is an orthonormal basis of L2([0, 1]) and let (αn) be a sequence
of i.i.d. N(0, 1) random variables. For each t ∈ [0, 1] and n ∈ N, let Xn(t) =∫ t
0

∑n
i=1 αifi(s)ds.

(i) For each t ∈ [0, 1], by first identifying the law of Xn(t) or otherwise, show that
(Xn(t))n∈N converges in distribution as n → ∞ to a N(0, t) random variable.

(ii) For each t ∈ [0, 1], show that (Xn(t))n∈N converges a.s. and in L2(Ω,F ,P) as
n → ∞ to a limit X(t).

(iii) For each 0 ⩽ t1 < · · · < tj ⩽ 1, show that (X(t1), . . . , X(tj)) has the same
distribution as (Bt1 , . . . , Btj ) where B is a standard Brownian motion on R.
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(a) Let B be a standard Brownian motion in R.

(i) State what it means for B to satisfy the strong Markov property.

(ii) Suppose that T > 0 is deterministic. Show that the process (BT−t − BT )t∈[0,T ]

has the same law as the process (Bt)t∈[0,T ].

(iii) For each T > 0, let IT = inf0⩽s⩽T Bs. Show that P[BT = IT ] = 0 for all
T > 0 deterministic. [You may use results proved in class provided you state
them clearly.]

(iv) Show that B|[0,1] a.s. attains its infimum exactly once.

(v) Deduce that a.s. the set of t ∈ [0, 1] at which B|[0,1] attains a local minimum is
countable.

(b) Let B be a standard Brownian motion in R2 and for each x ∈ R2 let Px be the law
under which B0 = x.

(i) For each r ⩾ 0 let τr = inf{t ⩾ 0 : |Bt| = r}. For 0 < ϵ < |x| < R < ∞, show
that

Px[τϵ < τR] =
logR− log |x|
logR− log ϵ

.

(ii) Show that the Lebesgue measure of B([0, 1]) is a.s. equal to 0.

3 Let H ⊆ G ⊆ F be σ-algebras and let (Ω,F ,P) be a probability space.

(a) Suppose that X ∈ L1(Ω,F ,P). Give the definition of E[X | G].

(b) Show that if X ∈ L2(Ω,F ,P) then

E[(X −E[X | G])2] +E[(E[X | G]−E[X |H])2] = E[(X −E[X |H])2].

(c) By expanding E[(Y −E[Y | G])2], show that if Y ∈ L2(Ω,F ,P) and E[Y | G] d
= Y then

E[Y | G] = Y a.s.

(d) State and prove the conditional version of Jensen’s inequality.

(e) Show that if Y ∈ L1(Ω,F ,P) and E[Y | G] d
= Y then E[Y | G] = Y a.s. [You may

assume without proof that there exists a strictly convex, differentiable function φ with
|φ(x)| ⩽ |x| for all x. Hint: apply the identity φ(x) > φ′(m)(x − m) + φ(m) for
all m ̸= x with x = Y and m = E[Y | G] to compare E[φ(Y ) | G] and φ(E[Y | G]) on
{E[Y | G] ̸= Y }.]
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(a) (i) State the a.s. martingale convergence theorem.

(ii) Let (Xn) be a non-negative supermartingale. Show that (Xn) converges a.s. to
an a.s. finite limit.

(iii) Give an example of a martingale (Xn) with Xn → −∞ a.s.

(b) Let (Xn) be a martingale with |Xn+1−Xn| ⩽ C. LetA = {limnXn exists and is finite}
and B = {lim supXn = +∞ and lim infXn = −∞}. Show that P[A ∪B] = 1. [Hint:
apply part (aii) to (Xn∧τ + M) for a carefully chosen collection of stopping times τ
and constants M .]

(c) Give an example of a martingale (Xn) with |Xn+1 −Xn| ⩽ C so that P[A],P[B] > 0
where A,B are as in the previous part.

(d) Events A1, A2 are said to be equal a.s. if P[A1 \A2] = 0 and P[A2 \A1] = 0. Let (Fn)
be a filtration with F0 = {∅,Ω} and let Bn be a sequence of events with Bn ∈ Fn.
Using part (b) or otherwise, show that the events

{Bn occurs infinitely often} and

{ ∞∑
n=1

P[Bn | Fn−1] = ∞

}

are equal a.s.

Part III, Paper 201



5

5

(a) Give the definition of what it means for a sequence of random variables (Xn) to
converge in distribution to a random variable X.

(b) Suppose that (Xn), (Yn) are independent sequences of random variables with values
in Rd and Xn → X in distribution and Yn → Y in distribution. Show that
Xn + Yn → X + Y in distribution.

(c) Suppose that (Xn) are i.i.d. real-valued random variables with characteristic function
ϕ. For each n ∈ N let Sn = X1 + · · · +Xn. Show that if ϕ is differentiable at 0 with
ϕ′(0) = ia then Sn/n → a in probability.

(d) Give the definition of what it means for family of probability measures (µn) on a
metric space M to be tight.

(e) Suppose that (Xn
t )n⩾1 is a family of stochastic processes with values in the space

C([0, 1]) of real-valued continuous functions equipped with the metric d(f, g) =
supt∈[0,1] |f(t) − g(t)| such that for every p > 0 there exist constants c, ϵ > 0 so
that

E[|Xn
t −Xn

s |p] ⩽ c|t− s|1+ϵ for all s, t ∈ [0, 1] and n ∈ N

and Xn
0 = 0 for all n ∈ N. Let µn be the law of (Xn

t ) on C([0, 1]). Show that the
family (µn) is tight. [You may use without proof that for every α ∈ (0, 1) and C > 0
the set XC,α of f ∈ C([0, 1]) such that f(0) = 0 and |f(s) − f(t)| ⩽ C|s − t|α for all
s, t ∈ [0, 1] is compact in C([0, 1]).]
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(a) Consider the space C([0, 1]) of real-valued continuous functions equipped with the
metric d(f, g) = supt∈[0,1] |f(t) − g(t)|. Let F be the smallest σ-algebra on C([0, 1])
which makes the maps πt : C([0, 1]) → R defined by πt(f) = f(t) measurable for all
0 ⩽ t ⩽ 1. Show that F = B where B is the Borel σ-algebra on C([0, 1]). [You may
use without proof that C([0, 1]) is separable.]

(b) Let A be a closed set and let X be a continuous, adapted process. Show that
TA = inf{t ⩾ 0 : Xt ∈ A} is a stopping time.

(c) Suppose that (Xn) is a UI sequence with Xn → X a.s.

(i) Show that E[Xn | G] → E[X | G] in L1.

(ii) Let (Yn), (Zn) be independent sequences of independent random variables with

P[Yn = 1] =
1

n
, P[Yn = 0] = 1− 1

n
, P[Zn = n] =

1

n
, P[Zn = 0] = 1− 1

n
.

By considering Xn = YnZn or otherwise, show that it need not be true that
E[Xn | G] → E[X | G] a.s.

(d) (i) State the Skorokhod embedding theorem.

(ii) Suppose that Sn is a square integrable martingale with S0 = 0. Suppose that B a
Brownian motion. Show that there exist stopping times 0 = T0 ⩽ T1 ⩽ T2 ⩽ · · ·
for B so that

(S0, . . . , Sk)
d
= (B(T0), . . . , B(Tk)) for all k ⩾ 0.

END OF PAPER
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