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1 (i) Define what it means for G to be an affine algebraic group.

(ii) Prove that any such has a faithful finite dimensional representation V .

(iii) For each of a) G = Ga, and b) G = Gm,

Decompose k[G] as a representation of G × G, where G × G acts by left and
right multiplication on G.

Let V be a finite dimensional representation of G.

What is HomG(k[G], V )? What is HomG(V, k[G])?

2

Let G be an affine algebraic group, defined (as always in this exam) over an
algebraically closed field k. Let g ∈ G(k).

a) Define what it means for g to be (i) semisimple, and (ii) unipotent. Define the
Jordan decomposition g.

Give an example of an algebraic group G with non-trivial semisimple and unipotent
elements such that the semisimple elements are dense in G.

In your example, do they form an open subvariety?

Give an example of such a group where the semisimple elements are not dense in
G, but form a closed subvariety.

[You must justify your answers!]

b) Define the derived subgroup [G,G] of G, and show that it is a connected algebraic
group if G is connected.

Suppose G is solvable. Show every element of [G,G] is unipotent, and that [G,G]
is nilpotent as a group.

Define diagonalisable, unipotent, semisimple and reductive algebraic groups.

c) Prove Kolchin’s theorem, that unipotent algebraic groups are nilpotent as a group.

Give an example to show that nilpotent groups aren’t necessarily unipotent.
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3 i) Let H be a closed subgroup of an affine algebraic group G, and I the ideal
of functions vanishing on H. Construct a finite dimensional subspace W ⊂ I whose
stabiliser is H, and hence prove there exists a finite dimensional representation V of G
and line ℓ ∈ PV whose stabiliser is H.

ii) Define what it means for a map X → Y to be a flat H-torsor. Briefly sketch why
the orbit map G → Gℓ, g 7→ gℓ, is a flat H-torsor, stating clearly the results of lectures
you are using.

iii) If G = SL2 and B is a Borel, prove that the quotient map G → G/B is a Zariski
B-torsor.

iv) If G = Gm and H = µ2, is the quotient map a Zariski µ2-torsor? Describe
explicitly a representation V of G and ℓ ∈ PV as in (i).

4

Let V = k2n, equipped with the symplectic form given by ⟨ei, e2n−i⟩ = 1 if i ⩽ n,
and ⟨ei, ej⟩ = 0 if i+ j ̸= 2n.

Let G = Sp(V ) = Sp2n be the group of automorphisms preserving the form.

Let B = {F1 < F2 < · · · < Fn | dimFi = i, Fi ⩽ F⊥
i }.

(i) Show that B is a projective algebraic variety, and that G acts on it transitively.
Show that the stabiliser of a point F ∈ B is a maximal closed connected solvable subgroup
of G.

Pick such a subgroup B = stabG(F ), and choose a maximal torus T ⊆ B.

(ii) Let g = Lie(G) be the Lie algebra of G. Write the root space decomposition of
g, and write the root datum Φ ⊆ X∗(T ),Φ∨ ⊆ X∗(T ).

(iii) Describe the Weyl group W = N(T )/T .

(iv) State and prove the Bruhat decomposition for Sp2n, explicitly.

For any subset I = {i1 < i2 < · · · < ir} ⊆ {1, . . . , n}, let PI = {Fi1 < · · · < Fir |
dimFij = ij , Fij ⩽ F⊥

ij
}, and πI : B → PI the natural projection.

(v) Describe stabG(πI(F )) for each I, and identify the fiber π−1
I (FI), FI := πI(F ),

as a flag variety of an explicit affine algebraic group.

(vi) Let ZG be the center of G. Identify this as an affine algebraic group, and prove
that the quotient group PSp(V ) = G/ZG is an affine algebraic group.

Write its root datum.

[Throughout this question, you may freely quote any theorems of lectures or of basic
algebraic geometry, provided that you state them explicitly.]
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