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(i) Define the category ∆ and the category of simplicial sets. For an integer n ⩾ 0,
define the simplicial set ∆n. If 0 ⩽ i ⩽ n, define the simplicial set Λn

i .

(ii) Given a simplicial set X, what does it mean for X to be a quasicategory? What
does it mean for X to be a Kan complex?

(iii) Given a category C, there is an associated simplicial set N(C) called the nerve of C.
For each integer n ⩾ 0, describe the set of maps of simplicial sets from ∆n to N(C)
in terms of the objects and morphisms of C.

(iv) Suppose that C is a category and Q is a quasicategory. Prove that any map of
simplicial sets p : Q → N(C) admits lifts against the inner horn inclusion Λ3

1 → ∆3.

(v) Suppose that

A B

C D

is a pushout square of simplicial sets, such that the map A → B is a monomorphism.
For every Kan complex X, the induced diagram of simplicial sets

Hom(D,X) Hom(B,X)

Hom(C,X) Hom(A,X)

is a pullback square. Prove that it is also a homotopy pullback square.
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(i) Define the normalized chains functor N∗ from simplicial abelian groups to chain
complexes.

(ii) Let K denote the Eilenberg–MacLane functor from chain complexes to simplicial
abelian groups, which is right adjoint to the functor N∗. State precisely the Dold–
Kan correspondence, in terms of the restriction of K to a subcategory of chain
complexes.

(iii) Let C∗ denote the chain complex

· · · ∂4−→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 → 0 → 0 → · · ·

In terms of the groups Ci and the maps ∂i, give an explicit formula for the set of
maps of simplicial sets from Λ2

1 to K(C∗).

(iv) If A is an abelian group and n ⩾ 0 an integer, write down the definition of the Kan
complex K(A,n) in terms of the functor K.

(v) Suppose
0 → A1 → A2 → A3 → 0

is a short exact sequence of abelian groups. Prove that there is a homotopy fiber
sequence

K(A1, n) → K(A2, n) → K(A3, n)

of pointed Kan complexes, for any integer n ⩾ 0.

(vi) Suppose that f : K(Z/4, 3)×K(Z/5, 3) → K(Z/4, 3)×K(Z/5, 3) is a map of pointed
Kan complexes, such that

H3(f ;Z) : H3(K(Z/4, 3)×K(Z/5, 3);Z) → H3(K(Z/4, 3)×K(Z/5, 3);Z)

is surjective. Prove that f is a homotopy equivalence.
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(i) Compute the cohomology groups H∗(ΩS4;Q). You do not need to compute the cup
product structure.

(ii) Prove that H i(K(Z, 3);Q) is isomorphic to Q when i = 0 or 3, but trivial for all
other integers i. You may assume knowledge of the cohomology ring of K(Z, 2) ≃
Sing(CP∞).

(iii) What is the smallest value of i > 0 for which Hi(ΩS
4;Z) is a non-zero group? What

is that group?

(iv) Compute πi(ΩS
4)⊗ZQ for each integer 0 ⩽ i ⩽ 6. [If it helps you to translate between

cohomological and homological information, you may assume that the homology
groups of ΩS4 and K(Z, 3) are finitely generated abelian groups.]

(v) What is π7(S
4)⊗Z Q?
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The exact sequence of abelian groups

0 → Z 4−→ Z → Z/4 → 0

gives rise to a homotopy fiber sequence

K(Z, 2) → K(Z, 2) → K(Z/4, 2)

of pointed Kan complexes. Extending this sequence once to the left gives another
homotopy fiber sequence

K(Z/4, 1) f−→ K(Z, 2) → K(Z, 2).

Note that we use f to denote the first map in this fiber sequence.

(i) The above fiber sequence gives rise to a Serre spectral sequence beginning with

Ep,q
2 = Hp(K(Z, 2);Hq(K(Z/4, 1);F2))

Calculate the groups Ep,q
r for every integer r ⩾ 2 and every pair of nonnegative

integers (p, q) such that p + q ⩽ 2. You may assume knowledge of the cohomology
ring of K(Z, 2) ≃ Sing(CP∞).

As a consequence of your calculation, write down the cohomology groups
H0(K(Z/4, 1);F2), H

1(K(Z/4, 1);F2), and H2(K(Z/4, 1);F2). In the last of these
groups, what is the image of the map H2(f ;F2)?

(ii) Consider the map Sq1 : K(F2, 1) → K(F2, 2) of pointed Kan complexes. Prove
that the homotopy fiber of this map is equivalent to K(Z/4, 1). You may assume
knowledge of the cohomology ring ofK(F2, 1) ≃ Sing(RP∞). [One possible strategy is
to first prove that the homotopy fiber must be equivalent to either K(F2, 1)×K(F2, 1)
or K(Z/4, 1), which can then be distinguished using cohomology with F2 coefficients.]

(iii) In the commutative ring H∗(K(Z/4, 1);F2), prove that degree 1 classes square to
zero. In other words, if x ∈ H1(K(Z/4, 1);F2), prove that x2 = 0.
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