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1 (i) Starting from the axioms for entropy, prove that entropy is subadditive: that
is, H[X,Y ] ⩽ H[X] +H[Y ] for any two discrete random variables X and Y taking values
in a finite set. Prove also the submodularity rule for entropy.

(ii) Show that for any three random variables X,Y and Z we have the inequality

H[X,Y, Z] ⩽
1

2

(
H[X,Y ] +H[Y, Z] +H[Z,X]

)
− 1

6

(
I[X : Y ] + I[Y : Z] + I[Z : X]

)
,

where I stands for mutual information.

(iii) Proving any facts you might need along the way, establish the the submodularity
rule for sums: that if X,Y and Z are independent discrete random variables taking values
in a finite Abelian group G, then

H[X + Y + Z]−H[Y + Z] ⩽ H[X + Z]−H[Z].

(iv) Define Ruzsa distance, and prove that under the same conditions as in part
(iii),

H[X + Y − Z]−H[X − Y ] ⩽ d[X;Z] + d[Y ;Z]− d[X;Y ].

2 Let G be a bipartite graph with vertex sets X and Y and density α. Let T be a
tree with vertex set V of size k, partitioned into sets V0 and V1 in such a way that every
edge of T joins a vertex in V0 to a vertex in V1. Let ϕ be a random map from V to X ∪ Y
such that ϕ(V0) ⊂ X and ϕ(V1) ⊂ Y , chosen uniformly at random from all such maps.
Say that ϕ is a homomorphism if ϕ(x)ϕ(y) is an edge of G for every edge xy of T . Prove
that the probability that ϕ is a homomorphism is at least αk−1.

3 (i) Prove that if A is a union-closed family of subsets of {1, 2, . . . , n} that does not
consist just of the empty set, then there is some x that is contained in at least (3−

√
5)|A|/2

of the sets in A. [You may assume the inequality h(xy) ⩾ ϕ(xh(y) + yh(x))/2, where h is
the binary entropy function and ϕ = (1 +

√
5)/2 is the golden ratio.]

(ii) Let A be a family of subsets of {1, 2, . . . , n} of size k. Show that the number of
quintuples of sets (A1, A2, A3, A4, A5) such that all pairwise unions Ai ∪ Aj (with i ̸= j)
belong to A is at most 35k/2|A|5/2. [The sets A1, . . . , A5 are not assumed to belong to A:
they are arbitrary subsets of {1, 2, . . . , n}.]
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4 (i) State and prove the entropic Balog-Szemerédi-Gowers theorem.

(ii) Let X,Y, U and V be Fn
2 -valued random variables and suppose that d[U ;X] +

d[V ;Y ] ⩽ Cd[X;Y ]. Let U1 and U2 be copies of U and let V1 and V2 be copies of V , with
U1, U2, V1 and V2 all independent. Prove that

d[U1 + U2 | U1 + U2 + V1 + V2;X] + d[V1 + V2 | U1 + U2 + V1 + V2;Y ] ⩽ (aC + b)d[X;Y ]

for some pair of absolute constants a, b. [You may assume the Ruzsa triangle inequality
and appropriate submodularity results, but any other lemmas you might need should be
proved.]
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