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1 Use the notation e(t) = e2πit. Consider 2 ⩽ p < ∞ and k ∈ N, k ⩾ 2. Let Cp,k(N)
be the infimum of C > 0 such that∫

[0,1]k−1

∣∣∣ N∑
n=1

bne((n
2, . . . , nk) · x)

∣∣∣pdx ⩽ C
( N∑

n=1

|bn|2
) p

2

for any bn ∈ C.

(a) State Khintchine’s inequality.

(b) Show that there exists C̃ ∈ (0,∞), permitted to depend on p and k, such that for
all N ⩾ 1,

C̃(1 +N
p
2
− k(k+1)

2
+1) ⩽ Cp,k(N).

(c) Show that for all ϵ > 0, there exists Cϵ ∈ (0,∞) such that

Cp,2(N) ⩽ CϵN
ϵ(1 +N

p
2
−2).

Hint: You may use that for any ϵ > 0, there exists Dϵ ∈ (0,∞) such that for any
integer 1 ⩽ m ⩽ M , the number of divisors of m is ⩽ DϵM

ϵ.
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2 Use the notation e(t) = e2πit. Let N,T ⩾ 1 and 2 ⩽ p < ∞. Define Dp(N,T ) to
be the infimum of C > 0 satisfying∫

[0,1]2x×[0,T ]t

∣∣∣ ∑
n=(n1,n2)∈Z2

|n|⩽N

bne(x · n+ t(
√
2n2

1 + n2
2))

∣∣∣pdxdt ⩽ C
( ∑

n=(n1,n2)∈Z2

|n|⩽N

|bn|2
) p

2

for all bn ∈ C.

(a) Let

f(x, t) =
∑

n=(n1,n2)∈Z2

|n|⩽N

e(x · n+ t(
√
2n2

1 + n2
2)).

Show that there are constants a0 > 0 and C > 0 and a discrete set T of times
t ∈ (0, T ) satisfying

(a) |f(0, t)| ⩾ a0N
2 for all t ∈ T ,

(b) |t− t′| ⩾ 1 if t, t′ ∈ T and t ̸= t′, and

(c) |T | ⩾ CT/N2.

Hint: You may assume that there is a constant c0 > 0 so that the following is true:
for each δ ∈ (0, 1) and T ⩾ 0, we have

#{b ∈ {0, . . . , T} : dist(b
√
2,Z) < δ} ⩾ c0δT.

(b) Let

g(x, t) =
∑

n=(n1,n2)∈Z2

|n|⩽N

bne(x · n+ t(
√
2n2

1 + n2
2)).

Show that there is an absolute constant C0 ∈ (0,∞) so that for any ϵ > 0, there is
Cϵ ∈ (0,∞) satisfying the following: for any (x0, t0) ∈ R3, we have

|g(x0, t0)| ⩽ C0N
4

∫
B
|g(x, t)|dxdt+ CϵN

−1000∥g∥L∞(R3)

in which B = {(x, t) ∈ R3 : |x− x0| < N ϵ−1, |t− t0| < N ϵ−2}.

(c) Show the following constructive interference lower bound: for all ϵ > 0, there exists
Cϵ > 0 such that

CϵN
−ϵTNp−6 ⩽ Dp(N,T )

for all N ⩾ 1 and T ⩾ 1.
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3 Let γ(t) = (t, t2, t3). For sets A ⊂ Rd, let χA denote the characteristic function of
A.

(a) State the trilinear Kakeya inequality in R3, for tubes with orientations in S2 taken
within 1/30 of the standard unit basis vectors e1, e2, e3.

(b) Prove a version of the trilinear Kakeya inequality in R3 with directions determined by
γ. That is, for a constant c > 0 that you may choose as you wish, state an estimate
that holds uniformly for any three finite families Tj , j = 1, 2, 3, of R1/2 × R1/2 × R
tubes (say cylindrical segments) in directions from the sets

Σj = {ω ∈ S2 : distS2(ω, γ(
j

3
)/|γ( j

3
)|) < c}.

Hint: You may use without proof that for x1, x2, x3 ∈ R,

det

 1 1 1
x1 x2 x3
x21 x22 x23

 = (x2 − x1)(x3 − x1)(x3 − x2).

(c) Prove that for all ϵ > 0, there exists Cϵ ∈ (0,∞) such that the following holds for
any r ⩾ 1: for any finite collections Sj of r× r×1 blocks Sj with unit normal within
1/10 of ej and any cSj ⩾ 0, we have

∥
3∏

j=1

(
∑

Sj∈Sj

cSjχSj (x))
1/3∥L3(Br) ⩽ Cϵr

ϵ
3∏

j=1

(
∑

Sj∈Sj

cSj )
1/3

for any r-ball Br ⊂ R3.

Hint: Consider the size of a 3-fold intersection S1 ∩ S2 ∩ S3 of blocks coming from
each family S1,S2,S3.
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(a) State the decoupling inequality for the parabola, with exponents 2 ⩽ p < ∞ and
using norms Lp(R2).

For parts (b) and (c), we first define some notation. Let γ(t) = (t, t2, t3) and consider the
cubic moment curve M3 = {γ(t) : 0 ⩽ t ⩽ 1}. To formulate decoupling for M3, for each
R ∈ 8N, we define the collections Θ(R) which partition M3.

� Let Θ(R) be the collection of approximate R− 1
3 × R− 2

3 × R−1 blocks θ, defined by

the convex hull of {γ(t) : t ∈ Iθ}, where Iθ ⊂ [0, 1] is a dyadic interval of length R− 1
3 .

� Note that for each S ∈ 8N with S < R and each τ ∈ Θ(S), θ ∈ Θ(R), either θ ⊂ τ
or θ ∩ τ = ∅.

� For each θ ∈ Θ(R), let fθ : R3 → C be Schwartz functions satisfying suppf̂θ ⊂ θ.

(b) Let r ∈ 8N satisfy 1 ⩽ r ⩽ R and suppose wr1/3 : R3 → [0,∞) is a Schwartz function
such that ŵr1/3 is supported in Br−1/3(0). Prove that there is a constant C > 0 such
that ∫

R3

|
∑

θ∈Θ(R)

fθ(x)wr1/3(x)|
2dx ⩽ C

∑
τ∈Θ(r)

∫
R3

|
∑

θ∈Θ(R)
θ⊂τ

fθ(x)wr1/3(x)|
2dx.

(c) Let r ∈ 8N satisfy 1 ⩽ r ⩽ R and suppose wr2/3 : R3 → [0,∞) is a Schwartz function
such that ŵr2/3 is supported in Br−2/3(0). Prove that for each ϵ > 0, there exists
Cϵ ∈ (0,∞) such that∫

R3

|
∑

θ∈Θ(R)

fθ(x)wr2/3(x)|
6dx ⩽ Cϵ

( ∑
τ∈Θ(r)

(∫
R3

|
∑

θ∈Θ(R)
θ⊂τ

fθ(x)wr2/3(x)|
6dx

)2/6)6/2
.

Hint: Freeze the x3-variable in
∑

θ∈Θ(R) fθ(x1, x2, x3)wr2/3(x1, x2, x3) and apply part
(a) to each slice.

END OF PAPER
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