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1 Let K be a field and X be a scheme of finite type over Spec(K).

(i) Let W be a k + 1 dimensional subvariety of X, r ∈ R(W )∗ a non-zero rational
function on W and V ⊆ W a k-dimensional subvariety.

Define the order ordV (r) of r along V , the divisor [div(r)] of r in Zk(X), the notion
of rationally equivalent k-cycles and finally the k-th Chow group Ak(X) of X.

(ii) Let j : Z ↪→ X be a closed subscheme and i : U ↪→ X its complement. Prove that
for all k there is an exact sequence

Ak(Z)
j∗−→ Ak(X)

i∗−→ Ak(U) → 0

[You are allowed to assume that proper pushforwards and flat pullbacks are well-
defined in Chow].

(iii) A cellular decomposition of X is a filtration

X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅

by closed subschemes such that each difference Xi ∖ Xi−1 is a disjoint union of
schemes Ui,j isomorphic to affine spaces Ani,j . Let Vi,j denote the closure of Ui,j in
X.

State (without proof) the Chow ring of affine spaces An, and show that A∗(X) is
generated by the classes [Vi,j ]. Finally, use this to compute the Chow groups of Pr.

(iv) Suppose that X is the blow-up of Pr at a point p. Let E denote the exceptional
divisor and let π : X → Pr be the blow-up map. For each k = 0, . . . , r − 1, let
Γk ⊆ E be a linear subspace of dimension k, and for j = 1, . . . , r, let Hj be a linear

subspace of dimension j of Pr passing through p. Denote by H̃j ⊆ X the strict
transform of Hj (recall that, by definition, this is the closure of π−1(Hj)∖ E in X).

Show that the classes [Γk] for k = 0, . . . , r − 1 and [H̃j ] for j = 1, . . . , r generate
A∗(X).
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2 Let π : E → X be a rank r = e + 1 vector bundle on a scheme X and denote by
p : P(E) → X the associated projective bundle.

(i) Define isomorphisms

ΘE :
e⊕

i=0

Ak−e+i(X) → Ak(P(E)).

[You are not required to prove that the map is an isomorphism; you only need to
define it. Moreover, you do not need to define Chern classes.]

(ii) Using the fact that the above maps are isomorphisms, deduce that the flat pullback
π∗ : A∗(X) → A∗+r+1(E) is injective.

(iii) Let 0 → O(−1) → p∗E → ξ → 0 be the tautological exact sequence over P(E).
Show that for every α ∈ A∗(X) we have

p∗(ci(ξ) ∩ p∗α) =

{
α if i = e

0 if i < e.

(iv) Let ζ = c1(O(1)). Show that for every β ∈ Ak(P(E)) we have the identity

{c(p∗E) ∩
∑
j⩾0

ζj ∩ p∗p∗(
∑
i⩾0

ζi ∩ β)}k = β.

3

(i) State the Euler sequence on Pm and use it to express the total Chern class

c(TPm) =
∑
i⩾0

ci(TPm)

as a polynomial in H = c1(O(1)). [You do not need to prove that the Euler sequence
is exact, nor define the maps involved; you only need to state the sequence.]

(ii) Let X ⊆ Pm be a pure k-dimensional closed subscheme of Pm. Give two character-
izations of the degree deg(X ⊆ Pm) of X in Pm: one using Hilbert polynomials and
one as an integral on Pm. [You do not need to prove that the two agree or any of the
intermediate results necessary to formulate them, as this was done in class.] Explain
why deg(X ⊆ Pm) is always a positive integer.

(iii) Suppose that X is a smooth variety of dimension n and that TX is trivial (i.e.,
TX

∼= On). Show that if there exists a closed embedding X ↪→ Pm, then m ⩾ 2n.

(iv) Let X be as in (iii), and suppose that it admits a closed embedding X ↪→ P2n. Show
that its degree satisfies deg(X ⊆ P2n) =

(
2n+1
n

)
.

END OF PAPER

Part III, Paper 162


